Skip to main content
Log in

An Efficient 1D Hybrid Numerical Model for Bed Morphology Calculations in Alluvial Channels

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents a hybrid numerical model for morphodynamic flow simulation in open channels. For this purpose, a deviatoric version of the Saint Venant’s equations is solved using the Beam and Warming implicit finite difference scheme. The Exner sediment continuity equation is solved using a simple finite difference scheme. The hydrodynamic and the sediment transport models are then coupled using the semicoupled approach. Due to the use of the deviatoric version of the governing equations, the model can efficiently handle the undulated river bed. Secondly, the present model can also use larger time step due to its implicit nature. Moreover, the implicit scheme is also iteration free and can smoothly handle transcritical flow regime. The model is tested in several test cases with bed slopes ranging from −0.244 to 0.086. The results obtained are compared with results of some existing models and found to be capable of handling varied situations with sufficiently high time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleksyuk AI, Belikov VV, Borisova NM, Fedorova TA (2018) Numerical modeling of non-uniform sediment transport in river channels. Water Resour 45(1):11–17

    Article  Google Scholar 

  • Anderson DA, Tannehill JD, Pletcher RH (1984) Computational fluid mechanics and heat transfer. McGraw-Hill, New York

    MATH  Google Scholar 

  • Andharia BR, Patel PL, Manekar VL, Porey PD (2018) Numerical and experimental studies in prediction of bed levels of aggrading channels. Curr Sci 114(8):1697–1708

    Article  Google Scholar 

  • Audusse E, Berthon C, Chalons C, Delestre O, Goutal N, Jodeau M, Sainte-Marie J, Giesselmann J, Sadaka G (2012) Sediment transport modelling: relaxation schemes for Saint-Venant-Exner and three layer models. ESAIM Proc 38:78–98

    Article  MathSciNet  MATH  Google Scholar 

  • Basirat S, Salehi Neyshabouri SAA (2017) Eulerian-Eulerian model application to simulate scouring downstream of sluice gate. Iran J Sci Technol Trans Civ Eng 41(2):197–203

    Article  Google Scholar 

  • Bellos C, Hrissanthou V (2003) Numerical simulation of morphological changes in rivers and reservoirs. Comput Math Appl 45(1–3):453–467

    Article  MathSciNet  MATH  Google Scholar 

  • Berthon C, Cordier S, Delestre O, Le MH (2012) An analytical solution of the shallow water system coupled to the Exner equation. CR Math 350:183–186

    MathSciNet  MATH  Google Scholar 

  • Bhallamudi SM, Chaudhry MH (1991) Numerical modeling of aggradation and degradation in alluvial channels. J Hydrauli Eng 117(9):1145–1164

    Article  Google Scholar 

  • Binh DV, Kantoush SA, Ata R, Tassi P, Nguyen TV, Lepesqueur J, Abderrezzak KEK, Bourban SE, Nguyen QH, Phuong DNL, Trung LV, Tran DA, Letrung T, Sumi T (2022) Hydrodynamics, sediment transport, and morphodynamics in the Vietnamese Mekong Delta: field study and numerical modelling. Geomorphology 413:108368

    Article  Google Scholar 

  • Biswas P, Barbhuiya AK (2020) Scour at river bend: a parametric study. Iran J Sci Technol Trans Civ Eng 44(3):1001–1021

    Article  Google Scholar 

  • Brufau P, Garcia-Navarro P, Ghilardi P, Natale L, Savi S (2000) 1D mathematical modelling of debris flow. J Hydraul Res 38(6):435–446

    Article  Google Scholar 

  • Campisano A, Cutore P, Modica C (2014) Improving the evaluation of slit-check dam trapping efficiency by using a 1D unsteady flow numerical model. J Hydraul Eng 140(7):04014024

    Article  Google Scholar 

  • Capart H, Young DL (1998) Formation of jump by the dam-break wave over a granular bed. J Fluid Mech 372:165–187

    Article  MATH  Google Scholar 

  • Chaudhry MH (2008) Open channel flow, 2nd edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Cordier S, Le MH, Morales de Luna T (2011) Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity(can) help. Adv Water Resour 34(8):980–989

    Article  Google Scholar 

  • Correia LRP, Karishnappan G, Graf WH (1992) Fully coupled unsteady mobile boundary flow model. J Hydraul Eng 118(3):476–494

    Article  Google Scholar 

  • Defina A (2003) Numerical experiments on bar growth. Water Resour Res 39:1092

    Article  Google Scholar 

  • Ebrahimiyan S, Hajikandi H, Bejestan MS, Jamali S, Asadi E (2021) Numerical study on the effect of sediment concentration on jump characteristics in trapezoidal channels. Iran J Sci Technol Trans Civ Eng 45(2):1059–1075

    Article  Google Scholar 

  • Garcia R, Kahawita RA (1986) Numerical solution of the St. Venant equations with the MacCormack finite difference scheme. Int J Numer Methods Fluids 6(5):259–274

  • Gill MA (1983) Diffusion model for aggrading channels. J Hydraul Res 21(5):355–367

    Article  Google Scholar 

  • Gunawan PH, Lhebrard X (2015) Hydrostatic relaxation scheme for the 1d shallow water-Exner equations in bedload transport. Comput Fluids 121:44–50

    Article  MathSciNet  MATH  Google Scholar 

  • He L, Chen D, Termini D, Jia Y, Zhang Y (2019) Modeling bedload transport trajectories along a Sine-generated channel. Water Resour 46(4):542–552

    Article  Google Scholar 

  • Jelti S, Boulerhcha M (2022) Numerical modeling of two dimensional non-capacity model for sediment transport by an unstructured finite volume method with a new discretization of the source term. Math Comput Simul 197:253–276

    Article  MathSciNet  MATH  Google Scholar 

  • Jia Y, Wang SS (1999) Numerical model for channel flow and morphological change studies. J Hydraul Eng 125(9):924–933

    Article  Google Scholar 

  • Kalita HM (2020) A numerical model for 1D bed morphology calculations. Water Resour Manag 34(15):4975–4989

    Article  Google Scholar 

  • Kassem AA, Chaudhry MH (1998) Comparison of coupled and semicoupled numerical models for alluvial channels. J Hydraul Eng 124(8):794–802

    Article  Google Scholar 

  • Klonidis AJ, Soulis JV (1997) An implicit numerical scheme for bed morphology calculations. In: Proceedings of VII international conference on computer methods and experimental measurements, Rhodes, Greece

  • Knack IM, Shen HT (2018) A numerical model for sediment transport and bed change with river ice. J Hydraul Res 56(6):844–856

    Article  Google Scholar 

  • Leal JGAB, Ferreira RML, Cardoso AH (2002) Dam-break waves on movable bed. In: Proceedings of international conference on fluvial hydraulics, Louvain-la-Neuve, Belgium

  • Leal JGAB, Ferreira RML, Cardoso AH (2010) Geomorphic dam-break flows. Part II: numerical simulation. Proc Inst Civ Eng: Water Manag 163(6):305–313

  • Liang D, Falconer RA, Lin B (2007) Coupling surface and subsurface flows in a depth averaged flood wave model. J Hydrol 337:147–148

    Article  Google Scholar 

  • Liang Q, Marche F (2009) Numerical resolution of well-balanced shallow water equations with complex source terms. Adv Water Resour 32(6):873–884

    Article  Google Scholar 

  • Lin Q, Wu W (2013) A one-dimensional model of mixed cohesive and non-cohesive sediment transport in open channels. J Hydraul Res 51(5):506–517

    Article  Google Scholar 

  • MacCormack RW (1969) The effect of viscosity in hypervelocity impact cratering. In: Proceedings of AIAA hypervelocity impact conference Cincinnati, USA.

  • Maleki FS, Khan AA (2016) 1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework. J Hydrodynam 28(4):534–543

    Article  Google Scholar 

  • Meselhe EA, Holly FM (1997) Invalidity of the Preissmann scheme for transcritical flow. J Hydraul Eng 123(7):652–655

    Article  Google Scholar 

  • Naser MA, Abdulrazzaq KA (2022) Modeling and simulation sedimentation process using finite difference method. J Mech Behav Mater 31(1):193–199

    Article  Google Scholar 

  • Rahuel JL, Holly FM, Chollet JP, Belleudy PJ, Yang G (1989) Modeling of riverbed evolution for bedload sediment mixtures. J Hydraul Eng 115(111):1521–1542

    Article  Google Scholar 

  • Rohilla K, Kumar S, Kumar P (2020) Numerical and experimental investigations on aggradation and degradation in irrigation canals accounting for infiltration. Irrig Drain 70(2):342–359

    Article  Google Scholar 

  • Soni JP, Garde RJ, Raju KGR (1980) Aggradation in streams due to overloading. J Hydraul Div 106(1):117–132

    Article  Google Scholar 

  • Soulis JV (2002) A fully coupled numerical technique for 2d bed morphology calculations. Int J Numer Methods Fluids 38(1):71–98

    Article  MATH  Google Scholar 

  • Stefano CD, Nicosia A, Palmeri V, Pampalone V, Ferro V (2022) Rill flow resistance law under sediment transport. J Soils Sed 22:334–347

    Article  Google Scholar 

  • Suryanarayana B (1969) Mechanics of degradation and aggradation in a laboratory flume. PhD dissertation, Colorado State University, Fort Collins

  • Van Rijn LC, Walstra DJR (2003) Morphology of pits, channels and trenches, Part I. Literature review and study approach. Delft Hydraulics, Delft.

  • Vasquez JA, Millar RG, Steffler PM (2007) Two-dimensional finite element river morphology model. Can J Civ Eng 34(6):752–760

    Article  Google Scholar 

  • Wang Z, Xia J, Zhou M, Deng S, Li T (2021) One-dimensional morphodynamic model for retrogressive erosion based on a sediment entrainment theory at high flow velocity. Int J Sed Res 36(2):306–316

    Article  Google Scholar 

  • Wilmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194

    Article  Google Scholar 

  • Wu W (2007) Computational River Dynamics. Taylor & Francis, London, UK

    Book  Google Scholar 

  • Wu W, Wang SSY (2007) One-dimensional modeling of dam-break flow over movable beds. J Hydraul Eng 133(1):48–58

    Article  MathSciNet  Google Scholar 

  • Wu W, Vieira DA, Wang SSY (2004) One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks. J Hydraul Eng 130(9):914–923

    Article  Google Scholar 

  • Yang CT (1996) Sediment transport: Theory and practice. McGraw Hill, Singapore

    Google Scholar 

  • Zhang M, Wu W (2011) A two dimensional hydrodynamic and sediment transport model for dam break based on finite volume method with quadtree grid. Appl Ocean Res 33(4):297–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hriday Mani Kalita.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, H.M. An Efficient 1D Hybrid Numerical Model for Bed Morphology Calculations in Alluvial Channels. Iran J Sci Technol Trans Civ Eng 47, 1189–1196 (2023). https://doi.org/10.1007/s40996-022-00977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-022-00977-9

Keywords

Navigation