Skip to main content
Log in

An Analytical Approach to Probabilistic Modeling of Liquefaction Based on Shear Wave Velocity

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Evaluation of liquefaction potential of soils is an important step in many geotechnical investigations in regions susceptible to earthquake. For this purpose, the use of site shear wave velocity (Vs) provides a promising approach. The safety factors in the deterministic analysis of liquefaction potential are often difficult to interpret because of uncertainties in the soil and earthquake parameters. To deal with the uncertainties, probabilistic approaches have been employed. In this research, the jointly distributed random variables (JDRV) method is used as an analytical method for probabilistic assessment of liquefaction potential based on measurement of site shear wave velocity. The selected stochastic parameters are stress-corrected shear wave velocity and stress reduction factor, which are modeled using a truncated normal probability density function and the peak horizontal earthquake acceleration ratio and earthquake magnitude, which are considered to have a truncated exponential probability density function. Comparison of the results with those of Monte Carlo simulation indicates very good performance of the proposed method in assessment of reliability. Comparison of the results of the proposed model and a standard penetration test (SPT)-based model developed using JDRV shows that shear wave velocity (Vs)-based model provides a more conservative prediction of liquefaction potential than the SPT-based model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfredo H-SA, Wilson H (1975) Probability concepts in engineering planning and design. Wiley, New York

    Google Scholar 

  • Andrus RD, Stokoe KH (1997) Liquefaction resistance based on shear wave velocity. Technical Report NCEER, US National Center for Earthquake Engineering Research (NCEER), vol 97, pp 89–128

  • Andrus RD, Stokoe KH II (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng 126:1015–1025

    Article  Google Scholar 

  • Andrus RD, Stokoe KH, Chung RM (1999) Draft guidelines for evaluating liquefaction resistance using shear wave velocity measurements and simplified procedures. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg

    Book  Google Scholar 

  • Andrus RD, Piratheepan P, Ellis BS, Zhang J, Juang CH (2004a) Comparing liquefaction evaluation methods using penetration-V S relationships. Soil Dyn Earthq Eng 24:713–721

    Article  Google Scholar 

  • Andrus RD, Stokoe KH, Hsein Juang C (2004b) Guide for shear-wave-based liquefaction potential evaluation. Earthq Spectr 20:285–308

    Article  Google Scholar 

  • Arulanandan K, Yogachandran C, Meegoda NJ, Ying L, Zhauji S (1986) Comparison of the SPT, CPT, SV and electrical methods of evaluating earthquake induced liquefaction susceptibility in Ying Kou City during the Haicheng Earthquake. Use of in situ tests in geotechnical engineering, ASCE, pp 389–415

  • Baziar M, Nilipour N (2003) Evaluation of liquefaction potential using neural-networks and CPT results. Soil Dyn Earthq Eng 23:631–636

    Article  Google Scholar 

  • Bolton Seed H, Tokimatsu K, Harder L, Chung RM (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111:1425–1445

    Article  Google Scholar 

  • Chau KW, Wu CL (2010) A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J Hydroinformatics 12(4):458–473

    Article  Google Scholar 

  • Cubrinovski M, Ishihara K (1999) Empirical correlation between SPT N-value and relative density for sandy soils. Soils Found 39:61–71

    Article  Google Scholar 

  • Das, B. M. (2013). Advanced soil mechanics, CRC Press

  • Dobry R, Stokoe K, Ladd R, Youd T (1981) Liquefaction susceptibility from S-wave velocity. ASCE National Convention, ASCE New York, New York, pp 81–544

    Google Scholar 

  • Duncan JM (2000) Factors of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng 126:307–316

    Article  Google Scholar 

  • Gabriels P, Snieder R, Nolet G (1987) In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves. Geophys Prospect 35:187–196

    Article  Google Scholar 

  • Goh AT (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232

    Article  Google Scholar 

  • Harr ME (1987) Reliability-based design in civil engineering. McGraw-Hill Book Company, New York

    Google Scholar 

  • Hasofer A, Lind N, U. o. W. S. M. Division (1973) An exact and invariant first-order reliability format. University of Waterloo, Solid Mechanics Division, Waterloo

    Google Scholar 

  • Hoel PG, Port SC, Stone CJ (1971) Introduction to probability theory. Houghton Mifflin, Boston, p 12

    MATH  Google Scholar 

  • Idriss I (1991) Earthquake ground motions at soft soil sites. In: Second international conference on recent advances in geotechnical earthquake engineering and soil dynamics, Missouri S&T (formerly the University of Missouri–Rolla), St. Louis, Missouri, 11–15 March 1991

  • Idriss I, Boulanger R (2006) Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn Earthq Eng 26:115–130

    Article  Google Scholar 

  • Idriss I, Boulanger RW (2008) Soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Oakland

    Google Scholar 

  • Ishihara K (1996) Soil behaviour in earthquake geotechnics. Oxford University Press, New York

    Google Scholar 

  • Johari A, Javadi A (2012) Reliability assessment of infinite slope stability using the jointly distributed random variables method. Sci Iran 19:423–429

    Article  Google Scholar 

  • Johari A, Khodaparast A (2013) Modelling of probability liquefaction based on standard penetration tests using the jointly distributed random variables method. Eng Geol 158:1–14

    Article  Google Scholar 

  • Johari A, Khodaparast A (2014) Analytical reliability assessment of liquefaction potential based on cone penetration test results. Sci Iran A 21(5):1549–1565

    Google Scholar 

  • Johari A, Khodaparast A (2015) Analytical stochastic analysis of seismic stability of infinite slope. Soil Dyn Earthq Eng 79:17–21

    Article  Google Scholar 

  • Johari A, Javadi A, Makiabadi M, Khodaparast A (2012) Reliability assessment of liquefaction potential using the jointly distributed random variables method. Soil Dyn Earthq Eng 38:81–87

    Article  Google Scholar 

  • Johari A, Fazeli A, Javadi A (2013) An investigation into application of jointly distributed random variables method in reliability assessment of rock slope stability. Comput Geotech 47:42–47

    Article  Google Scholar 

  • Juang CH, Chen CJ (1999) CPT-based liquefaction evaluation using artificial neural networks. Comput Aided Civil Infrastructure Eng 14:221–229

    Article  Google Scholar 

  • Juang CH, Chen CJ, Jiang T (2001) Probabilistic framework for liquefaction potential by shear wave velocity. J Geotech Geoenviron Eng 127:670–678

    Article  Google Scholar 

  • Juang CH, Jiang T, Andrus RD (2002) Assessing probability-based methods for liquefaction potential evaluation. J Geotech Geoenviron Eng 128:580–589

    Article  Google Scholar 

  • Juang CH, Yuan H, Lee D-H, Lin P-S (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129:66–80

    Article  Google Scholar 

  • Juang CH, Yang SH, Yuan H (2005) Model uncertainty of shear wave velocity-based method for liquefaction potential evaluation. J Geotech Geoenviron Eng 131:1274–1282

    Article  Google Scholar 

  • Juang CH, Ching J, Luo Z, Ku C-S (2012) New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Eng Geol 133:85–93

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, p 80

    Google Scholar 

  • Lees JJ, Ballagh RH, Orense RP, Ballegooy SV (2015) CPT-based analysis of liquefaction and re-liquefaction following the Canterbury earthquake sequence. Soil Dyn Earthq Eng 79(B):304–314

    Article  Google Scholar 

  • Liao SS, Whitman RV (1986) Overburden correction factors for SPT in sand. J Geotech Eng 112:373–377

    Article  Google Scholar 

  • Marosi KT, Hiltunen DR (2004) Characterization of spectral analysis of surface waves shear wave velocity measurement uncertainty. J Geotech Geoenviron Eng 130:1034–1041

    Article  Google Scholar 

  • Metropolis N, Ulam S (1949) The monte carlo method. J Am Stat Assoc 44:335–341

    Article  MATH  Google Scholar 

  • Mitchell JK, Tseng D-J (1990) Assessment of liquefaction potential by cone penetration resistance. In: Proceedings of the HB seed memorial symposium, vol 2. Bi Tech Publishing, pp 335–350

  • Morgenstern N (1995) Managing risk in geotechnical engineering: the third Casagrande Lecture. In: Proceedings of the 10th Pan-American Conference on soil Mechanics and Foundation Engineering, Guadalajara, Mexico, Mexican Society of Soil Mechanics, Mexico City, vol 4, pp 102–126

  • Muduli PK, Das SK, Bhattacharya S (2014) CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Georisk Assess Manag Risk Eng Syst Geohazards 8:14–28

    Article  Google Scholar 

  • Nafday AM (2010) Soil liquefaction modelling by survival analysis regression. Journal. Georisk Assess Manag Risk Eng Syst Geohazards 4:77–92

    Article  Google Scholar 

  • Ramachandran KM, Tsokos CP (2014) Mathematical statistics with applications in R. Elsevier, London

    MATH  Google Scholar 

  • Robertson P (1990) Cone penetration testing for evaluating liquefaction potential. In: Proceedings Symposium On Recent Advances in Earthquake Des. Using Lab. And In Situ Tests. ConeTec Investigations Ltd., Burnaby

  • Rosenblueth E (1975) Point estimates for probability moments. Proc Natl Acad Sci 72:3812–3814

    Article  MathSciNet  MATH  Google Scholar 

  • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97:1249

    Google Scholar 

  • Seed HK, Tokimatsu LH, Chung R (1984) The Influence of SPT Procedures on soil liquefaction resistance evaluations. Report No. UCB\EERC-84/15. Earthquake Engineering Research Center, University of California, Berkeley, CA

  • Seed HB, De Alba P (1986) Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. Use of in situ tests in geotechnical engineering, ASCE, pp 281–302

  • Seed RB, Harder LF (1990) SPT-based analysis of cyclic pore pressure generation and undrained residual strength. H Bolton Seed Mem Symp Proc. 2:351–376

    Google Scholar 

  • Seed HB, Idriss I, Arango I (1983) Evaluation of liquefaction potential using field performance data. J Geotech Eng 109:458–482

    Article  Google Scholar 

  • Silver ML (1977) Laboratory triaxial testing procedures to determine the cyclic strength of soils, prepared under contact to US NRC, (contact No. WRC-E (11-1)-2433), Reported No. NUREG-31

  • Sowers GF (1991) The human factor in failures. Civil Eng ASCE 61:72–73

    Google Scholar 

  • Stokoe KH, Roesset J, Bierschwale J, Aouad M (1988) Liquefaction potential of sands from shear wave velocity. In: Proceedings of the 9th world conference on earthquake, vol 13, pp 213–218

  • Taormina R, Chau KW, Sivakumar B (2015) Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J Hydrol 529(3):1788–1797

    Article  Google Scholar 

  • Terzaghi K (1996) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Tijms H (2012) Understanding probability. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Tokimatsu K, Seed HB (1987) Evaluation of settlements in sands due to earthquake shaking. J Geotech Eng 113:861–878

    Article  Google Scholar 

  • Tokimatsu K, Uchida A (1990) Correlation between liquefaction resistance and shear wave velocity. Soils Found 30:33–42

    Article  Google Scholar 

  • Whitman RV (2000) Organizing and evaluating uncertainty in geotechnical engineering. J Geotech Geoenviron Eng 126:583–593

    Article  Google Scholar 

  • Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing technique. J Hydrol 389(1–2):146–167

    Article  Google Scholar 

  • Youd T, Idriss I, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WL, Harder LF Jr., Hynes ME (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng 127:817–833

    Article  Google Scholar 

  • Zou H, Liu S, Cai G, Bheemasetti TV, Puppala AJ (2017) Mapping probability of liquefaction using geostatistics and first order reliability method based on CPTU measurements. Eng Geol 218:197–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Johari.

Appendix

Appendix

1.1 Derivation of Mathematical Functions K 1 to K 7 and FS and Their Domains is Presented in “Appendix

$$f_{{K_{1} }} (k_{1} ) = f_{{V_{\text{S1}} }} \left( {L^{ - 1} (k_{1} )} \right) \times \left| {\frac{{{\text{d}}L^{ - 1} (k_{1} )}}{{{\text{d}}k_{1} }}} \right| = f_{{V_{{{\text{S}}1}} }} (V_{\text{S1}} ) \times \left| {\frac{1}{{\frac{{{\text{d}}K_{1} }}{{{\text{d}}V_{{{\text{S}}1}} }}}}} \right|$$
(36)
$$L\left( {V_{{{\text{S1}}_{\hbox{max} } }} } \right) < k_{1} < L\left( {V_{{{\text{S}}1_{\hbox{min} } }} } \right)$$
$$\left\{ \begin{aligned} k_{{1_{\hbox{min} } }} = L\left( {V_{{{\text{S}}1_{\hbox{max} } }} } \right) \hfill \\ k_{{1_{\hbox{max} } }} = L\left( {V_{{{\text{S}}1_{\hbox{min} } }} } \right) \hfill \\ \end{aligned} \right.\text{ }$$

where

$$\left\{ {\begin{array}{*{20}l} {V_{{{\text{S1}}_{\hbox{min} } }} = V_{{{\text{S1}}_{\text{mean}} }} - 4\sigma_{{V_{\text{S1}} }} > 0} \hfill \\ {V_{{{\text{S1}}_{ \hbox{max} } }} = V_{{{\text{S1}}_{\text{mean}} }} + 4\sigma_{{V_{\text{S1}} }} } \hfill \\ \end{array} } \right.$$

VS1mean is average value of stress-corrected shear wave velocity. σVS1 is standard deviation of stress-corrected shear wave velocity. VS1min is minimum value of stress-corrected shear wave velocity. VS1max is maximum value of stress-corrected shear wave velocity.

$$f_{{K_{2} }} (k_{2} ) = f_{{{\text{r}}_{\text{d}} }} \left( {\frac{1}{{k_{2} }}} \right)\left| {\frac{\text{d}}{{{\text{d}}k_{2} }}\left( {\frac{1}{{k_{2} }}} \right)} \right| = \frac{1}{{\sigma_{{r_{\text{d}} }} \sqrt {2\pi } \cdot k_{2}^{2} }}\exp \left( { - 0.5\left( {\frac{{1 - r_{{{\text{d}}_{\text{mean}} }} \cdot k_{2} }}{{\sigma_{{r_{\text{d}} }} \cdot k_{2} }}} \right)^{2} } \right)$$
(37)
$$r_{{{\text{d}}_{ \hbox{min} } }} \le r_{\text{d}} \le r_{{{\text{d}}_{ \hbox{max} } }} \text{ }\quad \text{ } \to \quad \text{ }\frac{1}{{r_{{{\text{d}}_{ \hbox{max} } }} }} \le k_{2} \le \frac{1}{{r_{{{\text{d}}_{ \hbox{min} } }} }}$$
$$\left\{ \begin{aligned} k_{{2_{\hbox{min} } }} = \frac{1}{{r_{{{\text{d}}_{ \hbox{max} } }} }} \hfill \\ k_{{2_{\hbox{max} } }} = \frac{1}{{r_{{{\text{d}}_{\hbox{min} } }} }} \hfill \\ \end{aligned} \right.\text{ }$$
$$\left\{ {\begin{array}{*{20}l} {r_{{{\text{d}}_{ \hbox{min} } }} = r_{{{\text{d}}_{\text{mean}} }} - 4\sigma_{{r_{\text{d}} }} > 0} \hfill \\ {r_{{{\text{d}}_{ \hbox{max} } }} = r_{{{\text{d}}_{\text{mean}} }} + 4\sigma_{{r_{\text{d}} }} } \hfill \\ \end{array} } \right.$$

rdmean is average value of stress reduction factor. σrd is standard deviation of stress reduction factor. rdmin is minimum value of stress reduction factor. rdmax is maximum value of stress reduction factor.

$$f_{{K_{3} }} (k_{3} ) = f_{{M_{\text{w}} }} \left( {k_{3}^{{\text{ } - \frac{25}{64}}} } \right) \times \left| {\frac{\text{d}}{{{\text{d}}k_{3} }}\left( {k_{3}^{{\left( { - \text{ }\frac{25}{64}} \right)}} } \right)} \right| = \frac{{25 \times \lambda_{{M_{\text{w}} }} \cdot \exp \left( { - \lambda_{{M_{w} }} k_{3}^{{ - \text{ }\frac{25}{64}}} } \right)}}{{64 \times k_{3}^{{\left( {\frac{89}{64}} \right)}} \left( {\exp ( - \lambda_{{M_{\text{w}} }} M_{{w_{\hbox{min} } }} ) - \exp ( - \lambda_{{M_{\text{w}} }} M_{{w_{\hbox{max} } }} )} \right)}}$$
(38)
$$M_{{{\text{w}}_{ \hbox{min} } }} \le M_{\text{w}} \le M_{{{\text{w}}_{\hbox{max} } }} \text{ } \to \text{ }\left( {M_{{{\text{w}}_{\hbox{max} } }} } \right)^{ - 2.56} \le k_{3} \le \text{ }\left( {M_{{{\text{w}}_{ \hbox{min} } }} } \right)^{ - 2.56}$$
$$\left\{ \begin{aligned} k_{{3_{\hbox{min} } }} = \text{ }\left( {M_{{{\text{w}}_{ \hbox{max} } }} } \right)^{ - 2.56} \hfill \\ k_{{3_{\hbox{max} } }} = \left( {M_{{{\text{w}}_{ \hbox{min} } }} } \right)^{ - 2.56} \hfill \\ \end{aligned} \right.\text{ }$$

where MWmin is minimum value of moment magnitude. MWmax is maximum value of moment magnitude. λMw is rate of change in moment magnitude (rate parameter) = 1/βMw.βMw is scale parameter of moment magnitude.

$$f_{{K_{4} }} (k_{4} ) = f_{\alpha } \left( {\frac{1}{{k_{4} }}} \right)\left| {\frac{\text{d}}{{{\text{d}}k_{4} }}\left( {\frac{1}{{k_{4} }}} \right)} \right| = \frac{{\lambda_{\alpha } \cdot \exp \left( {\frac{{ - \lambda_{\alpha } }}{{k_{4} }}} \right)}}{{k_{4}^{2} .\exp \left( { - \lambda_{\alpha } \cdot \alpha_{\hbox{min} } } \right) - \exp \left( { - \lambda_{\alpha } \cdot \alpha_{\hbox{max} } } \right)}}$$
(39)
$$\frac{1}{{\alpha_{\hbox{max} } }} \le k_{4} \le \frac{1}{{\alpha_{\hbox{min} } }}$$
$$\left\{ \begin{aligned} k_{{4_{\hbox{min} } }} = \frac{1}{{\alpha_{\hbox{max} } }} \hfill \\ k_{{4_{\hbox{max} } }} = \frac{1}{{\alpha_{\hbox{min} } }} \hfill \\ \end{aligned} \right.$$

where αmin is minimum value of earthquake acceleration ratio. αmax is maximum value of earthquake acceleration ratio. λα is rate of change in earthquake acceleration ratio (rate parameter) = 1/βα.βα is scale parameter of earthquake acceleration ratio.

$$f_{{K_{5} }} (k_{5} ) = f_{{K_{1} \times K_{2} }} (k_{5} ) = \int\limits_{\alpha }^{\beta } {\left| {k_{1} } \right|f_{{K_{1} }} (k_{1} )f_{{K_{2} }} \left( {\frac{{k_{5} }}{{k_{1} }}} \right){\text{d}}k_{1} }$$
(40)
$$k_{{1_{\hbox{min} } }} k_{{2_{\hbox{min} } }} \le k_{5} \le k_{{1_{\hbox{max} } }} k_{{2_{\hbox{max} } }}$$
$$\left\{ \begin{aligned} k_{{5_{\hbox{min} } }} = k_{{1_{\hbox{min} } }} k_{{2_{\hbox{min} } }} \hfill \\ k_{{5_{\hbox{max} } }} = k_{{1_{\hbox{max} } }} k_{{2_{\hbox{max} } }} \hfill \\ \end{aligned} \right.\quad {\text{and}}\quad \left\{ \begin{aligned} \alpha = \hbox{max} \text{ }\left[ {k_{{1_{\hbox{min} } }} \& \frac{{k_{5} }}{{k_{{2_{\hbox{max} } }} }}} \right] \hfill \\ \beta = \hbox{min} \text{ }\left[ {k_{{1_{\hbox{max} } }} \& \frac{{k_{5} }}{{k_{{2_{\hbox{min} } }} }}} \right] \hfill \\ \end{aligned} \right.$$
$$f_{{K_{6} }} (k_{6} ) = f_{{K_{5} \times K_{3} }} (k_{6} ) = \int\limits_{\alpha }^{\beta } {\left| {k_{3} } \right|f_{{K_{3} }} (k_{3} )f_{{K_{5} }} \left( {\frac{{k_{6} }}{{k_{3} }}} \right){\text{d}}k_{3} }$$
(41)
$$k_{{5_{\hbox{min} } }} k_{{3_{\hbox{min} } }} \le k_{6} \le k_{{5_{\hbox{max} } }} k_{{3_{\hbox{max} } }}$$
$$\left\{ \begin{aligned} k_{{6_{\hbox{min} } }} = k_{{5_{\hbox{min} } }} k_{{3_{\hbox{min} } }} \hfill \\ k_{{6_{\hbox{max} } }} = k_{{5_{\hbox{max} } }} k_{{3_{\hbox{max} } }} \hfill \\ \end{aligned} \right.\quad {\text{and}}\quad \left\{ \begin{aligned} \alpha = \hbox{max} \text{ }\left[ {k_{{3_{\hbox{min} } }} \& \frac{{k_{6} }}{{k_{{5_{\hbox{max} } }} }}} \right] \hfill \\ \beta = \hbox{min} \text{ }\left[ {k_{{3_{\hbox{max} } }} \& \frac{{k_{6} }}{{k_{{5_{\hbox{min} } }} }}} \right] \hfill \\ \end{aligned} \right.$$
$$\text{ }f_{{K_{7} }} (k_{7} ) = f_{{K_{6} \times K_{4} }} (k_{7} ) = \int\limits_{\alpha }^{\beta } {\left| {k_{4} } \right|f_{{K_{4} }} (k_{4} )f_{{K_{6} }} \left( {\frac{{k_{7} }}{{k_{4} }}} \right){\text{d}}k_{4} }$$
(42)
$$k_{{6_{\hbox{min} } }} k_{{4_{\hbox{min} } }} \le k_{7} \le k_{{6_{\hbox{max} } }} k_{{4_{\hbox{max} } }}$$
$$\left\{ \begin{aligned} k_{{7_{\hbox{min} } }} = k_{{6_{\hbox{min} } }} k_{{4_{\hbox{min} } }} \hfill \\ k_{{7_{\hbox{max} } }} = k_{{6_{\hbox{max} } }} k_{{4_{\hbox{max} } }} \hfill \\ \end{aligned} \right.\quad {\text{and}}\quad \left\{ \begin{aligned} \alpha = \hbox{max} \text{ }\left[ {k_{{4_{\hbox{min} } }} \& \frac{{k_{7} }}{{k_{{6_{\hbox{max} } }} }}} \right] \hfill \\ \beta = \hbox{min} \text{ }\left[ {k_{{4_{\hbox{max} } }} \& \frac{{k_{7} }}{{k_{{6_{\hbox{min} } }} }}} \right] \hfill \\ \end{aligned} \right.$$

And the cumulative distribution function of K7 can be determined as below:

$$F_{{K_{7} }} (k_{7} ) = P\left\{ {K_{7} \in [k_{{7_{\hbox{min} } }} ,k_{7} ]} \right\} = \int\limits_{{k_{{7_{\hbox{min} } }} }}^{{k_{7} }} {f_{{K_{7} }} (t){\text{d}}t}$$
(43)
$$k_{{7_{\hbox{min} } }} \le k_{7} \le k_{{7_{\hbox{max} } }} .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johari, A., Khodaparast, A.R. & Javadi, A.A. An Analytical Approach to Probabilistic Modeling of Liquefaction Based on Shear Wave Velocity. Iran J Sci Technol Trans Civ Eng 43 (Suppl 1), 263–275 (2019). https://doi.org/10.1007/s40996-018-0163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-018-0163-7

Keywords

Navigation