Skip to main content
Log in

Influence of post-heat treatments on microstructural and mechanical properties of LPBF-processed Ti6Al4V alloy

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The present study investigates the different post-heat treatments (PHTs) (850 °C, 950 °C, and 1050 °C) to tailor the microstructure and mechanical properties of laser powder bed fusion (LPBF)-processed Ti6Al4V alloy. The microstructural features, chemical composition and micro-hardness of as-printed and heat-treated Ti6Al4V samples in longitudinal and transverse directions were characterised using optical microscopy, SEM, EDS, X-ray diffraction (XRD) and Vickers’ micro-hardness tester. Detailed XRD analysis was performed to quantify the phase volume fractions in the heat-treated samples. The microstructure of the heat-treated Ti6Al4V samples differed from the as-printed samples in grain structure and morphology. The width of α lath increased nearly twice with PHT temperature (from 850 to 1050 °C) in LPBF-processed samples. During PHT under furnace cooling, the growth of α lath width marginally increases due to a slower cooling rate than air cooling. XRD investigation revealed that the presence of β phase content in the PHTs at 950 °C and 1050 °C was consistent. Further, PHT at a higher temperature (i.e. 1050 °C) favours a higher amount of β phase content than the other PHT temperatures. The presence of (002)-closed pack planes was significantly lower for LPBF-processed Ti6Al4V samples, heat-treated under 1050 °C. The heat-treated LPBF-processed Ti6Al4V sample at 1050 °C exhibited a higher hardness (~ 27%) than the as-printed Ti6Al4V sample due to the higher β content among all the samples. The studied PHTs schemes were beneficial in generating the homogeneous and desirable microstructures for distinctive LPBF parts made of Ti6Al4V alloy befitting practical industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Zhang Y, Wu L, Guo X et al (2018) Additive manufacturing of metallic materials: a review. J Mater Eng Perform 27:1–13. https://doi.org/10.1007/s11665-017-2747-y

    Article  Google Scholar 

  2. Liu Y, Liu C, Liu W et al (2018) Laser powder deposition parametric optimization and property development for Ti-6Al-4V alloy. J Mater Eng Perform 27:5613–5621. https://doi.org/10.1007/s11665-018-3708-9

    Article  Google Scholar 

  3. Shrivastava A, Anand Kumar S, Rao S (2020) A numerical modelling approach for prediction of distortion in LPBF processed Inconel 718. Mater Today Proc 44:42334238. https://doi.org/10.1016/j.matpr.2020.10.538

    Article  Google Scholar 

  4. Kumar SA, Prasad RVS (2021) Chapter 2—basic principles of additive manufacturing: different additive manufacturing technologies. In: Manjaiah M, Raghavendra K, Balashanmugam N, Davim JP (eds) Additive manufacturing. Woodhead Publishing, Sawston, pp 17–35

    Chapter  Google Scholar 

  5. Nagesha BK, Vinodh K, Tigga AK et al (2021) Influence of post-processing techniques on residual stresses of SLM processed HPNGV. J Manuf Process 66:189–197. https://doi.org/10.1016/j.jmapro.2021.04.020

    Article  Google Scholar 

  6. Nagesha BK, Anand Kumar S, Vinodh K et al (2021) A thermos-mechanical modelling approach on the residual stress prediction of SLM processed HPNGV aeroengine part. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.12.940

    Article  Google Scholar 

  7. Prasad RVS, Kumar SA (2021) Chapter 10—materials for additive manufacturing and 4D printing. In: Manjaiah M, Raghavendra K, Balashanmugam N, Davim JP (eds) Additive manufacturing. Woodhead Publishing, Sawston, pp 209–232

    Chapter  Google Scholar 

  8. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  9. Pathania A, Anand Kumar S, Nagesha BK et al (2021) Reclamation of titanium alloy based aerospace parts using laser based metal deposition methodology. Mater Today Proc 45:4886–4892. https://doi.org/10.1016/j.matpr.2021.01.354

    Article  Google Scholar 

  10. Kumar P, Ramamurty U (2019) Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy. Acta Mater 169:45–59. https://doi.org/10.1016/j.actamat.2019.03.003

    Article  Google Scholar 

  11. Parry L, Ashcroft IA, Wildman RD (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15. https://doi.org/10.1016/j.addma.2016.05.014

    Article  Google Scholar 

  12. Gupta RK, Kumar VA, Mathew C, Rao GS (2016) Strain hardening of Titanium alloy Ti6Al4V sheets with prior heat treatment and cold working. Mater Sci Eng, A 662:537–550. https://doi.org/10.1016/j.msea.2016.03.094

    Article  Google Scholar 

  13. Rajkumar V, Nagesha BK, Tigga AK et al (2021) Single crystal metal deposition using laser additive manufacturing technology for repair of aero-engine components. Mater Today Proc 45:5395–5399. https://doi.org/10.1016/j.matpr.2021.02.083

    Article  Google Scholar 

  14. Shrivastava A, Rao S, Nagesha BK et al (2021) Remanufacturing of nickel-based aero-engine components using metal additive manufacturing technology. Mater Today Proc 45:4893–4897. https://doi.org/10.1016/j.matpr.2021.01.355

    Article  Google Scholar 

  15. Yan X, Yin S, Chen C et al (2018) Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloy Compd 764:1056–1071. https://doi.org/10.1016/j.jallcom.2018.06.076

    Article  Google Scholar 

  16. Zhang X-Y, Fang G, Leeflang S et al (2018) Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy. J Alloy Compd 735:1562–1575. https://doi.org/10.1016/j.jallcom.2017.11.263

    Article  Google Scholar 

  17. Li H, Jia D, Yang Z et al (2021) Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Ti–6Al–4V and TiB/Ti–6Al–4V composite: a comparative study. Mater Sci Eng, A 801:140415. https://doi.org/10.1016/j.msea.2020.140415

    Article  Google Scholar 

  18. Wu SQ, Lu YJ, Gan YL et al (2016) Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments. J Alloy Compd 672:643–652. https://doi.org/10.1016/j.jallcom.2016.02.183

    Article  Google Scholar 

  19. Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloy Compd 541:177–185. https://doi.org/10.1016/j.jallcom.2012.07.022

    Article  Google Scholar 

  20. Sabban R, Bahl S, Chatterjee K, Suwas S (2019) Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Mater 162:239–254. https://doi.org/10.1016/j.actamat.2018.09.064

    Article  Google Scholar 

  21. Zhang M, Yang Y, Wang D et al (2018) Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting. Mater Sci Eng A 736:288–297. https://doi.org/10.1016/j.msea.2018.08.084

    Article  Google Scholar 

  22. Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mat Trans A 42:3190–3199. https://doi.org/10.1007/s11661-011-0731-y

    Article  Google Scholar 

  23. Ahmed T, Rack HJ (1998) Phase transformations during cooling in α+β titanium alloys. Mater Sci Eng A 243:206–211. https://doi.org/10.1016/S0921-5093(97)00802-2

    Article  Google Scholar 

  24. Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18:584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  25. Sames WJ, List FA, Pannala S et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  26. Ni C, Zhu L, Zheng Z et al (2020) Effect of material anisotropy on ultra-precision machining of Ti-6Al-4V alloy fabricated by selective laser melting. J Alloy Compd 848:156457. https://doi.org/10.1016/j.jallcom.2020.156457

    Article  Google Scholar 

  27. Chen LY, Huang JC, Lin CH et al (2017) Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng, A 682:389–395. https://doi.org/10.1016/j.msea.2016.11.061

    Article  Google Scholar 

  28. Mulay RP, Moore JA, Florando JN et al (2016) Microstructure and mechanical properties of Ti–6Al–4V: Mill-annealed versus direct metal laser melted alloys. Mater Sci Eng, A 666:43–47. https://doi.org/10.1016/j.msea.2016.04.012

    Article  Google Scholar 

  29. Qazi JI, Senkov ON, Rahim J, Froes FH (2003) Kinetics of martensite decomposition in Ti–6Al–4V–xH alloys. Mater Sci Eng 359:137–149. https://doi.org/10.1016/S0921-5093(03)00350-2

    Article  Google Scholar 

  30. Hozoorbakhsh A, Ismail MIS, Aziz NBA (2015) A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int Commun Heat Mass Transfer 68:178–187. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.013

    Article  Google Scholar 

  31. Tan C, Zhou K, Ma W et al (2017) Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des 134:23–34. https://doi.org/10.1016/j.matdes.2017.08.026

    Article  Google Scholar 

  32. Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371. https://doi.org/10.1016/j.actamat.2016.11.018

    Article  Google Scholar 

  33. Sercombe T, Jones N, Day R, Kop A (2008) Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyping J 14:300–304. https://doi.org/10.1108/13552540810907974

    Article  Google Scholar 

  34. Pinke P, Caplovic L, Kovacs T (2011) The influence of heat treatment on the microstructure of the casted Ti6Al4V titanium alloy. Slovak University of Technology Bratislava Web 11:

  35. Raghavan S, Nai MLS, Wang P et al (2018) Heat treatment of electron beam melted (EBM) Ti-6Al-4V: microstructure to mechanical property correlations. Rapid Prototyping J 24:774–783. https://doi.org/10.1108/RPJ-05-2016-0070

    Article  Google Scholar 

  36. Agius D, Kourousis KI, Wallbrink C, Song T (2017) Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: The effect of build orientation. Mater Sci Eng A 701:85–100. https://doi.org/10.1016/j.msea.2017.06.069

    Article  Google Scholar 

  37. Syed AK, Ahmad B, Guo H et al (2019) An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V. Mater Sci Eng A 755:246–257. https://doi.org/10.1016/j.msea.2019.04.023

    Article  Google Scholar 

  38. Xiu M, Tan YT, Raghavan S et al (2022) The effect of heat treatment on microstructure, microhardness, and pitting corrosion of Ti6Al4V produced by electron beam melting additive manufacturing process. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-08839-4

    Article  Google Scholar 

  39. Lütjering G (1998) Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A 243:32–45. https://doi.org/10.1016/S0921-5093(97)00778-8

    Article  Google Scholar 

  40. Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: part I. Microstructural characterization. Metall Mater Trans A 35:1861–1867

    Article  Google Scholar 

  41. Mengucci P, Santecchia E, Gatto A et al (2019) Solid-state phase transformations in thermally treated Ti–6Al–4V alloy fabricated via laser powder bed fusion. Materials 12:2876. https://doi.org/10.3390/ma12182876

    Article  Google Scholar 

  42. Callister WD (2000) Fundamentals of materials science and engineering. Wiley, London

    Google Scholar 

  43. Pederson R, Babushkin O, Skystedt F, Warren R (2003) Use of high temperature X-ray diffractometry to study phase transitions and thermal expansion properties in Ti-6Al-4V. Mater Sci Technol 19:1533–1538. https://doi.org/10.1179/026708303225008013

    Article  Google Scholar 

  44. Huang J-Y, Chang C-H, Wang W-C et al (2020) Systematic evaluation of selective fusion additive manufacturing based on thermal energy source applied in processing of titanium alloy specimens for medical applications. Int J Adv Manuf Technol 109:2421–2429

    Article  Google Scholar 

  45. Frkan M, Konecna R, Nicoletto G, Kunz L (2019) Microstructure and fatigue performance of SLM-fabricated Ti6Al4V alloy after different stress-relief heat treatments. Transport Res Proc 40:24–29. https://doi.org/10.1016/j.trpro.2019.07.005

    Article  Google Scholar 

  46. Oh J, Lee JG, Kim NJ et al (2004) Effects of thickness on fatigue properties of investment cast Ti-6Al-4V alloy plates. J Mater Sci 39:587–591

    Article  Google Scholar 

  47. Khorasani A, Gibson I, Awan US, Ghaderi A (2019) The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit Manuf 25:176–186. https://doi.org/10.1016/j.addma.2018.09.002

    Article  Google Scholar 

  48. Rafi HK, Karthik NV, Gong H et al (2013) Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 22:3872–3883. https://doi.org/10.1007/s11665-013-0658-0

    Article  Google Scholar 

  49. Dieter GE (1976) Mechanical metallurgy. McGracw-hill, Inc, London

    Google Scholar 

  50. Chong Y, Bhattacharjee T, Tsuji N (2019) Bi-lamellar microstructure in Ti–6Al–4V: microstructure evolution and mechanical properties. Mater Sci Eng A 762:138077. https://doi.org/10.1016/j.msea.2019.138077

    Article  Google Scholar 

  51. Sahoo R, Mantry S, Sahoo TK et al (2013) Effect of microstructural variation on erosion wear behavior of Ti-6Al-4V alloy. Tribol Trans 56:555–560. https://doi.org/10.1080/10402004.2013.767400

    Article  Google Scholar 

  52. Kumar J, Punnose S, Mukhopadhyay CK et al (2012) Acoustic emission during tensile deformation of smooth and notched specimens of near alpha titanium alloy. Res Nondestr Eval 23:17–31. https://doi.org/10.1080/09349847.2011.622068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar Subramaniyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, A., Subramaniyan, A.K. & Nagesha, B.K. Influence of post-heat treatments on microstructural and mechanical properties of LPBF-processed Ti6Al4V alloy. Prog Addit Manuf 7, 1323–1343 (2022). https://doi.org/10.1007/s40964-022-00306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00306-6

Keywords

Navigation