Skip to main content
Log in

The effect of heat treatment on microstructure, microhardness, and pitting corrosion of Ti6Al4V produced by electron beam melting additive manufacturing process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

There has been limited studies on corrosion behaviour of post-processed electron beam melted (EBM) Ti6Al4V, given that the factors affecting corrosion resistance of AM Ti6Al4V remain unclear. This paper proposes using heat treatment method to improve the pitting corrosion resistance of EBM Ti6Al4V. Different treatment profiles alter the microstructure of EBM Ti6Al4V. A clear trend is observed between microhardness and α lath width. As-printed EBM Ti6Al4V exhibits an inferior pitting potential, while heat treatment provided a significant improvement in the corrosion resistance. This study finds that the β phase fraction is a better indicator than the α lath width for pitting corrosion resistance. Solution air-cooled and ageing heat-treated EBM Ti6Al4V exhibits good mechanical and corrosion properties, and even performs better than commercial cast Ti6Al4V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

We confirm that data is open and transparent.

References

  1. AlMangour B, Yang JM (2017) Integration of heat treatment with shot peening of 17–4 stainless steel fabricated by direct metal laser sintering. JOM 69:2309–2313. https://doi.org/10.1007/s11837-017-2538-9

    Article  Google Scholar 

  2. Harris ID (2017) Development and implementation of metals additive manufacturing. Additive Manufacturing Handbook pp 215–224

  3. Srinivasan R, Nai MLS, Pan W, Wai Jack S, Tao L, Jun W (2018) Heat treatment of electron beam melted (EBM) Ti-6Al-4V: microstructure to mechanical property correlations. Rapid Prototyp J 24:774–783. https://doi.org/10.1108/RPJ-05-2016-0070

    Article  Google Scholar 

  4. Deirmina F, Peghini N, AlMangour B, Grzesiak D, Pellizzari M (2019) Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater Sci Eng A 753:109–121. https://doi.org/10.1016/j.msea.2019.03.027

    Article  Google Scholar 

  5. Stéphane G, Christopher H, Mohamed G, Rajarshi B (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18:584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  6. Shunyu L, Yung CS (2019) Additive manufacturing of Ti6Al4V alloy: A review. MATER DESIGN 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  7. Kazantseva N, Krakhmalev P, Thuvander M, Yadroitsev I, Vinogradova N, Ezhov I (2018) Martensitic transformations in Ti-6Al-4V (ELI) alloy manufactured by 3D Printing. Mater Charact 146:101–112. https://doi.org/10.1016/j.matchar.2018.09.042

    Article  Google Scholar 

  8. Harrysson OLA, Cormier DR, Marcellin-Little DJ, Jajal KR (2006) Direct fabrication of custom orthopedic implants using electron beam melting technology. Int J Adv Manuf Technol 193–208. https://doi.org/10.26153/tsw/5604

  9. Xipeng T, Yihong K, Shu Beng T, Chee Kai C (2014) Application of electron beam melting (EBM) in additive manufacturing of an impeller. Proc of the Int Conf on Prog in Addit Manuf 327-332. https://doi.org/10.3850/9789810904463_076

  10. Pan W, Xipeng T, Nai MLS, Shu Beng T, Jun W (2016) Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti–6Al–4V component. MATER DESIGN 95:287–295. https://doi.org/10.1016/j.matdes.2016.01.093

    Article  Google Scholar 

  11. Pan W, Mui LSN, Xipeng T, Guglielmo V, Srinivasan R, Wai JS, Shu BT, Qing XP, Jun W (2016) Recent progress of additive manufactured Ti-6Al-4V by electron beam melting. 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference 8–10, Austin, TX, USA

  12. Pan W, Mui LSN, Wai JS, Jun W (2015) Effect of building height on microstructure and mechanical properties of big-sized Ti-6Al-4V plate fabricated by electron beam melting. MATEC web of conferences EDP Sciences 30-02001. https://doi.org/10.1051/matecconf/20153002001

  13. Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater Charact 84:153–168. https://doi.org/10.1016/j.matchar.2013.07.012

    Article  Google Scholar 

  14. Xipeng T, Yihong K, Yu Jun T, Marion D, Dominique M, Shu Beng T, Kah Fai L, Chee Kai C (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater 97:1–16. https://doi.org/10.1016/j.actamat.2015.06.036

    Article  Google Scholar 

  15. Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A Phys Metall Mater Sci 41:3422–3434. https://doi.org/10.1007/s11661-010-0397-x

    Article  Google Scholar 

  16. Facchini L, Emanuele M, Pierfrancesco R, Alberto M (2009) Microstructure and mechanical properties of Ti–6Al–4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171–178. https://doi.org/10.1108/13552540910960262

    Article  Google Scholar 

  17. Wei Quan T, Pan W, Xipeng T, Nai MLS, Erjia L, Shu Beng T (2016) Microstructure and wear properties of electron beam melted Ti-6Al-4V parts: a comparison study against as-cast form. Metals 6:284. https://doi.org/10.3390/met6110284

    Article  Google Scholar 

  18. Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH, Martinez E, Martinez JL, Stafford SW (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater Charact 60:96–105. https://doi.org/10.1016/j.matchar.2008.07.006

    Article  Google Scholar 

  19. Xiaoli Z, Shujun L, Man Z, Yandong L, Sercombe TB, Shaogang W, Yulin H, Rui Y, Murr LE (2016) Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. MATER DESIGN 95:21–31. https://doi.org/10.1016/j.matdes.2015.12.135

    Article  Google Scholar 

  20. Choi Y, Dong-Geun L (2019) Correlation between surface tension and fatigue properties of Ti-6Al-4V alloy fabricated by EBM additive manufacturing. APPL SURF SCI 481:741–746. https://doi.org/10.1016/j.apsusc.2019.03.0993

    Article  Google Scholar 

  21. Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM, Peeyush N (2017) Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater Sci Eng 685:417–428. https://doi.org/10.1016/j.msea.2017.01.019

    Article  Google Scholar 

  22. Kiel-Jamrozik M, Jamrozik W, Witkowska I (2017) The heat treatment influence on the structure and mechanical properties of Ti6Al4V alloy manufactured by SLM technology. Conference on Innovations in Biomedical Engineering Springer 319-327. https://doi.org/10.1007/978-3-319-70063-2_34

  23. Kang Y-J, Yang S, Young-Kyun Kim B, Almangour K-A (2019) Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured inconel 718 alloy. Corros Sci 158:108082. https://doi.org/10.1016/j.corsci.2019.06.030

    Article  Google Scholar 

  24. Yang J, Yang H, Hanchen Yu, Wang Z (2017) Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall Mater Trans A Phys Metall Mater Sci 48:3583–3593. https://doi.org/10.1007/s11661-017-4087-9

    Article  Google Scholar 

  25. Nianwei D, Lai-Chang Z, Junxi Z, Xin Z, Qingzhao N, Yang C, Maoliang W, Chao Y (2016) Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros Sci 111:703–710. https://doi.org/10.1016/j.corsci.2016.06.009

    Article  Google Scholar 

  26. Nianwei D, Lai-Chang Z, Junxi Z, Qimeng C, Maoliang W (2016) Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros Sci 102:484–489. https://doi.org/10.1016/j.corsci.2015.10.041

    Article  Google Scholar 

  27. Xiaojuan G, Yujie C, Daixiu W, Bin L, Ruiping L, Yan N, Yunping L (2017) Building direction dependence of corrosion resistance property of Ti–6Al–4V alloy fabricated by electron beam melting. Corros Sci 127:101–109. https://doi.org/10.1016/j.corsci.2017.08.008

    Article  Google Scholar 

  28. Bai Y, Gai X, Li S, Zhang LC, Liu Y, Hao Y, Zhang X, Yang R, Gao Y (2017) Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corros Sci 123:289–296. https://doi.org/10.1016/j.corsci.2017.05.003

    Article  Google Scholar 

  29. Yangzi X, Yuan L, Sundberg KL, Jianyu L, Sisson RD (2017) Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V. J Mater Eng Perform 26:2572–2582. https://doi.org/10.1007/s11665-017-2710-y

    Article  Google Scholar 

  30. Abdeen DH, Palmer BR (2016) Corrosion evaluation of Ti-6Al-4V parts produced with electron beam melting machine. Rapid Prototyp J 22:322–329. https://doi.org/10.1108/RPJ-09-2014-0104

    Article  Google Scholar 

  31. Xin G, Bai Y, Li Ji, Li S, Hou W, Yulin H, Xing Z, Rui Y, Misra RDK (2018) Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting. Corros Sci 145:80–89. https://doi.org/10.1016/j.corsci.2018.09.010

    Article  Google Scholar 

  32. Kawalec Jill S, Brown SA, Payer JH, Merritt K (1995) Mixed-metal fretting corrosion of Ti6Al4V and wrought cobalt alloy. J Biomed Mater Res 29:867–873. https://doi.org/10.1002/jbm.820290712

    Article  Google Scholar 

  33. Schmidt AM, Azambuja DS (2006) Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides. Mater Res 9:387–392. https://doi.org/10.1590/S1516-14392006000400008

    Article  Google Scholar 

  34. Davide P, Brenna A, Diamanti MV, Beretta S, Bolzoni F, Ormellese M, Pedeferri MP (2017) Corrosion of titanium: Part 1: Aggressive environments and main forms of degradation. J Appl Biomater Funct Mater 15:291–302. https://doi.org/10.5301/2Fjabfm.5000387

  35. Huo S, Meng X (1990) The states of bromide on titanium surface prior to pit initiation. Corros Sci 31:281–286. https://doi.org/10.1016/0010-938X(90)90120-T

    Article  Google Scholar 

  36. Xingchen Y, Shuo Y, Chaoyue C, Chunjie H, Rodolphe B, Rocco L, Min K, Wenyou M, Christian C, Hanlin L, Min L (2018) Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloys Compd 764:1056–1071. https://doi.org/10.1016/j.jallcom.2018.06.076

    Article  Google Scholar 

  37. Ghods S, Schultz E, Wisdom C, Schur R, Pahuja R, Montelione A, Arola D, Ramulu M (2020) Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse. Materialia 9:100631. https://doi.org/10.1016/j.mtla.2020.100631

    Article  Google Scholar 

  38. Jeong-Rim L, Min-Su L, Si Mo Y, Dongseok K, Tea-Sung J (2022) Influence of heat treatment and loading direction on compressive deformation behaviour of Ti–6Al–4V ELI fabricated by powder bed fusion additive manufacturing. Mater Sci Eng A 831:142258. https://doi.org/10.1016/j.msea.2021.142258

    Article  Google Scholar 

  39. Kumar P, Ramamurty U (2019) Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy. Acta Mater 169:45–59. https://doi.org/10.1016/j.actamat.2019.03.003

    Article  Google Scholar 

  40. Alexander MR, Thompson GE, Zhou X, Beamson G, Fairley N (2002) Quantification of oxide film thickness at the surface of aluminium using XPS. Surf Interface Anal 34:485–489. https://doi.org/10.1002/sia.1344

    Article  Google Scholar 

  41. Fuentes GG, Elizalde E, Yubero F, Sanz JM (2002) Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy. Surf Interface Anal 33:230–237. https://doi.org/10.1002/sia.1205

    Article  Google Scholar 

  42. Gong X, Lydon J, Cooper K, Chou K (2013) Microstructural characterization and modeling of beam speed effects on Ti-6Al-4V by electron beam additive manufacturing. SFF 459–469. https://doi.org/10.26153/tsw/15699

  43. Semiatin SL, Knisley SL, Fagin PN, Barker DR, Zhang F (2003) Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V. Metall and Mater Trans A 34:2377–2386. https://doi.org/10.1007/s11661-003-0300-0

    Article  Google Scholar 

  44. Safdar A, Wei LY, Snis A, Lai Z (2012) Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater Charact 65:8–15. https://doi.org/10.1016/j.matchar.2011.12.008

    Article  Google Scholar 

  45. Kumar KN, Muneshwar P, Singh SK, Jha AK, Pant B, George KM (2015) Effect of grain boundary alpha on mechanical properties of Ti5. 4Al3Mo1V alloy. JOM 67:1265–1272. https://doi.org/10.1007/s11837-015-1443-3

    Article  Google Scholar 

  46. Lütjering GERD (1998) Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys. Mater Sci Eng A 243:32–45. https://doi.org/10.1016/S0921-5093(97)00778-8

    Article  Google Scholar 

  47. Ras MH, Pistorius PC (2002) Possible mechanisms for the improvement by vanadium of the pitting corrosion resistance of 18% chromium ferritic stainless steel. Corros Sci 44:2479–2490. https://doi.org/10.1016/S0010-938X(02)00050-1

    Article  Google Scholar 

  48. Hendrik RM (2007) The use of vanadium to enhance localised corrosion resistance in 18% chromium ferritic stainless steel. University of Pretoria. https://hdl.handle.net/2263/26412

  49. Bergamo T (2013) Effect of nitridation on high temperature corrosion of ferritic stainless steel. Chalmers University of Technology. https://hdl.handle.net/20.500.12380/175594

Download references

Funding

The authors received support provided by Nanyang Technological University (NTU) and Singapore Institute of Manufacturing Technology (SIMTech). The work was financially supported by A*STAR Industrial Additive Manufacturing Program: Work Package 3 (Electron Beam Melting, Grant No. 1325504103).

Author information

Authors and Affiliations

Authors

Contributions

Mingzhen Xiu: conceptualization, experiment, data curation, writing of original draft and editing. Yong Teck Tan: supervision, data curation, review and editing. Srinivasan Raghavan: supervision, review and editing. Min Hao Goh: data curation. Mui Ling Sharon Nai: review, project administration and funding acquisition.

Corresponding author

Correspondence to Mui Ling Sharon Nai.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, M., Tan, Y.T., Raghavan, S. et al. The effect of heat treatment on microstructure, microhardness, and pitting corrosion of Ti6Al4V produced by electron beam melting additive manufacturing process. Int J Adv Manuf Technol 120, 1281–1293 (2022). https://doi.org/10.1007/s00170-022-08839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08839-4

Keywords

Navigation