Skip to main content
Log in

Predictive Analysis of Water Wettability and Corrosion Resistance of Secondary AlSi10MnMg(Fe) Alloy Manufactured by Vacuum-Assisted High Pressure Die Casting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present study, a predictive analysis was performed to investigate the effect of droplet size, section size and type of the primary and secondary AlSi10MnMg alloys manufactured by vacuum-assisted high pressure die casting on wettability of the cast samples with water, since wettability influences corrosion resistance. Additionally, corrosion resistance of samples was studied using a linear polarization experiment. Contact angle (CA) measurements were performed on the specimens using a goniometer. An Artificial Neural Network was then developed to predict the contact angle values as a function of the predictor variables. The developed model was able to predict unseen CA values with excellent accuracy with the Pearson correlation coefficient of 0.96 between the predicted and observed CA. The modeling results show that the type of alloy (primary or secondary) is the most significant factor affecting CA, where almost 80% of CA variation is the result of changing the type of alloy. Confocal microscopy images demonstrate that this is attributed to the change in the heterogeneity of the surface, which affects contact angle values. The corrosion studies reveal that corrosion resistance is dependent on the type of alloy and surface roughness. The primary alloy possesses more corrosion resistance than the secondary alloy. This is due to the larger fraction of intermetallic compounds in the microstructure of the secondary alloy, which serve as galvanic sites in the corrosion reaction accelerating corrosion rate. Moreover, the non-uniformity induced by larger surface roughness is detrimental to the corrosion resistance of the samples. These results indicate that the data-driven approach used in this research is very promising not only to predict the performance, but also to optimize and design high-performance corrosion resistant surfaces of cast aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. Niklas, A. Bakedano, S. Orden, M. da Silva, E. Nogués, A.I. Fernández-Calvo, Effect of microstructure and casting defects on the mechanical properties of secondary AlSi10MnMg(Fe) test parts manufactured by vacuum-assisted high pressure die casting technology. Mater. Today Proc. 2, 4931–4938 (2015). https://doi.org/10.1016/j.matpr.2015.10.059

    Article  Google Scholar 

  2. X.P. Niu, B.H. Hu, I. Pinwill, H. Li, Vacuum-assisted high pressure die casting of Aluminum alloys. J. Mater. Process. Technol. 105, 119–127 (2000). https://doi.org/10.1016/S0924-0136(00)00545-8

    Article  Google Scholar 

  3. E.J. Vinarcik, High integrity die casting processes (Wiley, Hoboken, 2002)

    Google Scholar 

  4. S. Shankar, D. Apelian, Die soldering: mechanism of the interface reaction between molten aluminum alloy and tool steel. Metall. Mater. Trans. B 33, 465–476 (2002). https://doi.org/10.1007/s11663-002-0057-7

    Article  Google Scholar 

  5. A. Niklas, A.I. Fernández-Calvo, A. Bakedano, S. Orden, M. da Silva, E. Nogués, E. Roset, A new secondary AlSi10MnMg (Fe) alloy suitable for manufacturing of ductile Aluminum parts by vacuum assisted high pressure die casting technology. Metall. Ital. 108(6), 17–20 (2016)

    Google Scholar 

  6. A. Niklas, S. Orden, A. Bakedano, M. Da Silva, E. Nogués, A.I. Fernández-Calvo, Effect of solution heat treatment on gas porosity and mechanical properties in a die cast step test part manufactured with a new AlSi10MnMg (Fe) secondary alloy. Mater. Sci. Eng. A 667, 376–382 (2016)

    Article  CAS  Google Scholar 

  7. L. Kuchariková, E. Tillová, M. Chalupová, M. Mazur, A. Herčko, R. Čička, Analysis of microstructure in AlSi7Mg0.3 cast alloy with different content of Fe. Transp. Res. Proc. 40, 59–67 (2019). https://doi.org/10.1016/j.trpro.2019.07.011

    Article  Google Scholar 

  8. A. Niklas, A. Bakedano, S. Orden, M. da Silva, E. Nogués, A.I. Fernández-Calvo, Effect of microstructure and casting defects on the mechanical properties of secondary AlSi10MnMg(Fe) test parts manufactured by vacuum assisted high pressure die casting technology. Mater Today Proc. 2, 4931–4938 (2015). https://doi.org/10.1016/j.matpr.2015.10.059

    Article  Google Scholar 

  9. R. Ramachandran, M. Nosonovsky, Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant. Phys. Chem. Chem. Phys. 17, 24988–24997 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. J. Liang, Y. Hu, Y. Wu, H. Chen, Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution. Surf. Coat. Technol. 240, 145–153 (2014)

    Article  CAS  Google Scholar 

  11. T. Liu, L. Dong, T. Liu, Y. Yin, Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces. Electrochim. Acta 55, 5281–5285 (2010)

    Article  CAS  Google Scholar 

  12. B. Bhushan, Introduction to tribology (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  13. M. Nosonovsky, B. Bhushan, Green tribology: biomimetics, energy conservation and sustainability (Springer, Berlin, 2012)

    Book  Google Scholar 

  14. I.I.I. Young Thomas, An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805). https://doi.org/10.1098/rstl.1805.0005

    Article  Google Scholar 

  15. V. Hejazi, Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials (2014).

  16. D.Y. Kwok, C.N.C. Lam, A. Li, A. Leung, R. Wu, E. Mok, A.W. Neumann, Measuring and interpreting contact angles: a complex issue. Colloids Surf. A 142, 219–235 (1998). https://doi.org/10.1016/S0927-7757(98)00354-9

    Article  CAS  Google Scholar 

  17. C.N.C. Lam, R. Wu, D. Li, M.L. Hair, A.W. Neumann, Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv. Coll. Interface. Sci. 96, 169–191 (2002). https://doi.org/10.1016/S0001-8686(01)00080-X

    Article  CAS  Google Scholar 

  18. H. Tavana, C.N.C. Lam, K. Grundke, P. Friedel, D.Y. Kwok, M.L. Hair, A.W. Neumann, Contact angle measurements with liquids consisting of bulky molecules. J. Colloid Interface Sci. 279, 493–502 (2004). https://doi.org/10.1016/j.jcis.2004.06.090

    Article  CAS  PubMed  Google Scholar 

  19. T.T. Chau, A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Miner. Eng. 22, 213–219 (2009). https://doi.org/10.1016/j.mineng.2008.07.009

    Article  CAS  Google Scholar 

  20. A. Kordijazi, S.K. Behera, O. Akbarzadeh, M. Povolo, P. Rohatgi, A statistical analysis to study the effect of silicon content, surface roughness, droplet size and elapsed time on wettability of hypoeutectic cast aluminum–silicon alloys (In Light Metals Springer, Berlin, 2020), pp.185–193

    Google Scholar 

  21. A. Kordijazi, S. Kumar Behera, S. Suri, Z. Wang, M. Povolo, N. Salowitz, P. Rohatgi, Data-driven modeling of wetting angle and corrosion resistance of hypereutectic cast aluminum-silicon alloys based on physical and chemical properties of surface. Surf. Interf. 20, 100549 (2020). https://doi.org/10.1016/j.surfin.2020.100549

    Article  CAS  Google Scholar 

  22. A. Kordijazi, H.M. Roshan, A. Dhingra, M. Povolo, P.K. Rohatgi, M. Nosonovsky, Machine-learning methods to predict the wetting properties of iron-based composites. Surf. Innov. 9(2–3), 1–9 (2020). https://doi.org/10.1680/jsuin.20.00024

    Article  Google Scholar 

  23. A. Kordijazi, D. Weiss, S. Das, S. Behera, H.M. Roshan, P. Rohatgi, Effect of solidification time on microstructure, wettability, and corrosion properties of A205–T7 Aluminum alloys. Int. J. Metalcasting 15, 1–11 (2021)

    Article  Google Scholar 

  24. S. Das, A. Kordijazi, O. Akbarzadeh, P.K. Rohatgi, An innovative process for dispersion of graphene nanoparticles and nickel spheres in A356 alloy using pressure infiltration technique. Eng. Rep. 2(1), e12110 (2020)

    Article  CAS  Google Scholar 

  25. D.C. Montgomery, G.C. Runger, Applied statistics and probability for engineers (Wiley, Hoboken, 2010)

    Google Scholar 

  26. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  27. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)

    Article  CAS  Google Scholar 

  28. S. Vafaei, M.Z. Podowski, Theoretical analysis on the effect of liquid droplet geometry on contact angle. Nucl. Eng. Des. 235, 1293–1301 (2005)

    Article  CAS  Google Scholar 

  29. G. ASTM, Standard practice for calculation of corrosion rates and related information from electrochemical measurements (G102-89 ASTM International, West Conshohocken, 2004)

    Google Scholar 

  30. N. Birbilis, R.G. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion. J. Electrochem. Soc. 152, B140–B151 (2005)

    Article  CAS  Google Scholar 

  31. J. Li, J. Dang, A summary of corrosion properties of Al-rich solid solution and secondary phase particles in Al alloys. Metals 7, 84 (2017). https://doi.org/10.3390/met7030084

    Article  CAS  Google Scholar 

  32. C. Ahn, E. Lee, [ICACE2019] Effect of cooling rate on the corrosion resistance and mechanical property of AlSi 10 MnMg alloy. J. Korean Soc. Mar. Eng. 43(8), 618–624 (2019)

    Google Scholar 

  33. C. Berlanga, A. Bakedano, A.P. de Ciriza, P.J. Rivero, S. Mendez, R. Rodriguez, A. Niklas, Evaluation of the corrosion resistance of a new AlSi10MnMg (Fe) secondary alloy. Mater. Today Proc. 10, 312–318 (2019)

    Article  CAS  Google Scholar 

  34. A. Kordijazi, Optimization of Ni–P–Zn electroless bath and investigation of corrosion resistance of as-plated coatings. Mater. Res. Express 6, 096565 (2019)

    Article  CAS  Google Scholar 

  35. A. Almansour, M. Azizi, A.M. Jesri, S. Entakly, Effect of surface roughness on corrosion behavior of aluminum alloy 6061 in salt solution (3.5% NaCl). Int. J. Acad. Sci. Res. 3, 37–45 (2015)

    Google Scholar 

  36. A. Kordijazi, S.K. Behera, A. Jamet, A. Fernández-Calvo, P. Rohatgi, Predictive analysis of water wettability and corrosion resistance of secondary AlSi10MnMg(Fe) alloy manufactured by vacuum assisted high pressure die casting. AFS Trans. 129, 91–102 (2021)

    Google Scholar 

Download references

Acknowledgements

This project was supported financially by NSF 1331532 grant. This paper is based upon a presentation made in the 2021 AFS Metalcasting Congress and published in the AFS Transactions Vol. 129.36

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaroop K. Behera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based upon a presentation made in the 2021 AFS Metalcasting Congress and published in the AFS Transactions Vol. 129.36

Appendix I

Appendix I

See Table

Table 6 Observed and Predicted Contact Angle Values for Each Combination

6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordijazi, A., Behera, S.K., Jamet, A. et al. Predictive Analysis of Water Wettability and Corrosion Resistance of Secondary AlSi10MnMg(Fe) Alloy Manufactured by Vacuum-Assisted High Pressure Die Casting. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01327-3

Keywords

Navigation