Skip to main content
Log in

Heat Treatment Simulation of Aluminum Alloy Wheels and Investigation of Process Steps

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

T6 heat treatment is usually applied to Al-Si-Mg alloy parts. This process can be modeled and solved by computer simulations for reduced experimental costs and environmental effects, and more flexible design approaches because this approach can avoid a high number of experiments based on trial and error. In the first stage, microstructural and mechanical characterization studies were performed for three different conditions: as-cast, quenched and artificially aged. Also, according to the 3D scanner test results, dimensional change of three different regions was observed at all of the heat treatment steps. In the second part, the production steps of the aluminum alloy wheels were simulated for further evaluation of the heat treatment by analyzing yield strength, residual stress state and dimensional changes on the different regions of the alloy wheel’s cross section. Yield strength predictions obtained by modeling based on quench factor analysis and Shercliff–Ashby can be considered compatible with the experimental yield strength values. Although the error percentage between predicted and measured values is less than %10 in outer and inner flange regions, a more significant error value is present for the spoke region. As quench factor analysis values increased, the measured hardness values also tended to increase. Compressive residual stress is mostly observed on the wheel surface after quenching, and a slight but insufficient stress relief was observed in the artificial aging step. The dimensional change obtained by simulation is highest in the outer flange region after quenching and dimensional change increased in all regions after the artificial aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. D. Eheliyagoda, J. Li, Y. Geng, X. Zeng, The role of China’s aluminum recycling on sustainable resource and emission pathways. Resour. Policy (2022). https://doi.org/10.1016/j.resourpol.2022.102552

    Article  Google Scholar 

  2. B.K. Reck, D.B. Müller, K. Rostkowski, T. Graedel, Anthropogenic nickel cycle: insights into use, trade, and recycling. Environ. Sci. Techol. 42(9), 3394–3400 (2008). https://doi.org/10.1021/es072108l

    Article  CAS  Google Scholar 

  3. J.G. Kaufman, Introduction to Aluminum Alloys and Tempers, 1st edn. (ASM International, OH, USA, 2000) pp. 4–10

  4. M. Zeren, E. Karakulak, S. Gümüş, Influence of Cu addition on microstructure and hardness of near-eutectic Al-Si-xCu-alloys. Trans. Nonf. Met. Soc. China 21(8), 1698–1702 (2011). https://doi.org/10.1016/S1003-6326(11)60917-5

    Article  CAS  Google Scholar 

  5. M. Kaba, A. Donmez, A. Cukur et al., AlSi5Mg0.3 alloy for the manufacture of automotive wheels. Int. Metalcast. 12, 614–624 (2018). https://doi.org/10.1007/s40962-017-0191-2

    Article  CAS  Google Scholar 

  6. Ü. Elmahti, A.Y. Kaya, O. Özaydın et al., Impact test analysis of aluminum alloy wheels under different temperature. Int. Metalcast. 17, 1129–1138 (2023). https://doi.org/10.1007/s40962-022-00845-2

    Article  Google Scholar 

  7. A. Mohamed, F. Samuel, A review on the heat treatment of Al-Si-Cu/Mg casting alloys. Heat Treat.-Conv. Nov. Apps. 1, 55–72 (2012)

    Google Scholar 

  8. E. Sjölander, S. Seifeddine, The heat treatment of Al–Si–Cu–Mg casting alloys. J. Mater. Pross. Technol. 210(10), 1249–1259 (2010). https://doi.org/10.1016/j.jmatprotec.2010.03.020

    Article  CAS  Google Scholar 

  9. D.S. MacKenzie, Quenching and the control of residual stresses and distortion. in International Conference on Structural Aluminum Casting Casting, 2(4), (2003)

  10. D. S. MacKenzie, D. Lambert, Effect of quenching variables on distortion and residual stresses, H. Tre. Surf. Eng. pp. 184–191. (2003)

  11. M. Koc, J. Culp, T. Altan, Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. J. Mater. Pross. Technol. 174, 342–354 (2006). https://doi.org/10.1016/j.jmatprotec.2006.02.007

    Article  CAS  Google Scholar 

  12. M. Todinov, Mechanism for formation of the residual stresses from quenching. Modell. Simul. Mater. Sci. Eng. 6(3), 273 (1998)

    Article  Google Scholar 

  13. C. Şimşir, C.H. Gür, 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. J. Mater. Pross. Technol. 1–3, 211–221 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.074

    Article  CAS  Google Scholar 

  14. S. Wang, Y. Li, M. Yao, R. Wang, Compressive residual stress introduced by shot peening. J. Mater. Pross. Technol. 73(1–3), 64–73 (1998). https://doi.org/10.1016/S0924-0136(97)00213-6

    Article  Google Scholar 

  15. R.D. Lopez-Garcia, I. Medina-Juárez, A. Maldonado-Reyes, Effect of quenching parameters on distortion phenomena in AISI 4340 steel. Metals 12(5), 759 (2022). https://doi.org/10.3390/met12050759

    Article  CAS  Google Scholar 

  16. Y. Hu, G. Wang, W. Wang, Y. Rong, Effect of precipitation during quenching on the prediction of the mechanical properties of Al-5 Pct Cu alloy after T6 treatment. Metall. Mater. Trans. A 48(11), 5667–5677 (2017). https://doi.org/10.1007/s11661-017-4291-7

    Article  CAS  Google Scholar 

  17. I.G. Ringdalen, I.J. Jensen, C.D. Marioara, J. Friis, The role of grain boundary precipitates during intergranular fracture in 6XXX series aluminium alloys. Metals 11(6), 894 (2021). https://doi.org/10.3390/met11060894

    Article  CAS  Google Scholar 

  18. A. Cuniberti, A. Tolley, M.C. Riglos, R. Giovachini, Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Mater. Sci. Eng. A 527(20), 5307–5311 (2010). https://doi.org/10.1016/j.msea.2010.05.003

    Article  CAS  Google Scholar 

  19. E. Ozawa, H. Kimura, Excess vacancies and the nucleation of precipitates in aluminum-silicon alloys. Acta metall. 18(9), 995–1004 (1970)

    Article  CAS  Google Scholar 

  20. X. Yang, J. Zhu, Z. Nong, Z. Lai, D. He, FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process. Comput. Mater. Sci. 69, 396–413 (2013). https://doi.org/10.1016/j.commatsci.2012.11.024

    Article  CAS  Google Scholar 

  21. J.A. Österreicher, N.P. Papenberg, M. Kumar, D. Ma, S. Schwarz, C.M. Schlögl, Quantitative prediction of the mechanical properties of precipitation-hardened alloys with special application to Al–Mg–Si. Mater. Sci. Eng. A 703, 380–385 (2017). https://doi.org/10.1016/j.msea.2017.07.080

    Article  CAS  Google Scholar 

  22. P. Li, D. Maijer, T. Lindley, P. Lee, Simulating the residual stress in an A356 automotive wheel and its impact on fatigue life. Metall. Mater. Trans. B 38(4), 505–515 (2007). https://doi.org/10.1007/s11663-007-9050-5

    Article  CAS  Google Scholar 

  23. A. Akman, Y. Akyildiz, B. Horasan, R. Yamanoglu, Aydin, Investigation the effect of quenching media and agitation conditions on the microstructure, hardness and stress distribution of AISI 4140 steel by using FEM, 16th MAS international European conference on mathematical, engineering, natural and medical science (2022)

  24. M. Schneider, W. Schaefer, E. Sjölander, S. Seiffeddine, I.L. Svensson, Simulation of microstructure and mechanical properties of aluminum components during casting and heat treatment. (IOP conference series: materials science and engineering, 2012). Accessed 12 September 2022

  25. S.-P. Lu, R. Du, J.-P. Liu, L.-C. Chen, S.-S. Wu, A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs. China Foundy 15(1), 11–16 (2018). https://doi.org/10.1007/s41230-018-7058-x

    Article  Google Scholar 

  26. A. Manente, G. Timelli, Optimizing the heat treatment process of cast aluminium alloys. Rec. Trends Process. Degrad. Al Alloys 9, 197–220 (2011)

    Google Scholar 

  27. M.A. Elahi, S.G. Shabestari, Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy. Trans. Nonf. Metals Soc. China 26(4), 956–965 (2016)

    Article  Google Scholar 

  28. C. Lee, Effect of strain rate on fatigue property of A356 aluminium casting alloys containing pre-existing micro-voids. Int. J. Fatigue 131, 105368 (2020). https://doi.org/10.1016/j.ijfatigue.2019.105368

    Article  CAS  Google Scholar 

  29. J.-M. Huang, H.-D. Zhao, Z.-M. Chen, Microstructure and properties of A356 alloy wheels fabricated by low-pressure die casting with local squeeze. J. Mater. Eng. Perform. 28(4), 2137–2146 (2019). https://doi.org/10.1007/s11665-019-03993-5

    Article  CAS  Google Scholar 

  30. C. do Lee, Effect of T6 heat treatment on the defect susceptibility of fatigue properties to microporosity variations in a low-pressure die-cast A356 alloy. Mater. Sci. Eng. A 559, 496–505 (2013). https://doi.org/10.1016/j.msea.2012.08.131

    Article  CAS  Google Scholar 

  31. G. Dolan, R. Flynn, D.A. Tanner, J. Robinson, Quench factor analysis of aluminium alloys using the Jominy end quench technique. Mater. Sci. Techol. 21(6), 687–692 (2005). https://doi.org/10.1179/174328405X43081

    Article  CAS  Google Scholar 

  32. G. Dolan, J. Robinson, Residual stress reduction in 7175–T73, 6061–T6 and 2017A–T4 aluminium alloys using quench factor analysis. J. Mater. Process. Technol. 153, 346–351 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.065

    Article  CAS  Google Scholar 

  33. H. Shercliff, M. Ashby, A process model for age hardening of aluminium alloys—I the model. Acta Metall. et Mater. 38(10), 1789–1802 (1990). https://doi.org/10.1016/0956-7151(90)90291-N

    Article  CAS  Google Scholar 

  34. L. Wu, W.G. Ferguson, Computer modelling of age hardening for cast aluminium alloys. IOP Conf. Ser. Mater. Sci. Eng. 4(1), 012014 (2009)

    Article  Google Scholar 

  35. S. Pramod, A.P. Rao, B. Murty, S.R. Bakshi, Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy. Mater. Sci. Eng. A 674, 438–450 (2016). https://doi.org/10.1016/j.msea.2016.08.022

    Article  CAS  Google Scholar 

  36. M. Azadi, M.M. Shirazabad, Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy. Mater. Des. 45, 279–285 (2013). https://doi.org/10.1016/j.matdes.2012.08.066

    Article  CAS  Google Scholar 

  37. J. Robinson, R.L. Cudd, D.A. Tanner, G. Dolan, Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J. Mater. Process. Technol. 119(1–3), 261–267 (2001). https://doi.org/10.1016/S0924-0136(01)00927-X

    Article  CAS  Google Scholar 

  38. D.D. Hall, I. Mudawar, Optimization of quench history of aluminum parts for superior mechanical properties. Int. J. Heat Mass Transf. 39(1), 81–95 (1996). https://doi.org/10.1016/S0017-9310(96)85008-3

    Article  CAS  Google Scholar 

  39. J. Robinson, D.A. Tanner, S. Van Petegem, A. Evans, Influence of quenching and aging on residual stress in Al–Zn–Mg–Cu alloy 7449. Mater. Sci. Technol. 28(4), 420–430 (2012). https://doi.org/10.1179/1743284711Y.0000000063

    Article  CAS  Google Scholar 

  40. T.I. So, H.C. Jung, C.D. Lee, K.S. Shin, Effects of T6-treatment on the defect susceptibility of tensile strength to microporosity variation in low pressure die-cast A356 alloy. Met. Mater. Int. 21(5), 842–849 (2015). https://doi.org/10.1007/s12540-015-5247-3

    Article  CAS  Google Scholar 

  41. J.H. Peng, X.L. Tang, J.T. He, D.Y. Xu, Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonf. Met. Soc. China 21(9), 1950–1956 (2011)

    Article  CAS  Google Scholar 

  42. S. Ram, K. Chattopadhyay, I. Chakrabarty, Microstructures and high temperature mechanical properties of A356-Mg2Si functionally graded composites in as-cast and artificially aged (T6) conditions. J. Alloys Compd. 805, 454–470 (2019). https://doi.org/10.1016/j.jallcom.2019.07.075

    Article  CAS  Google Scholar 

  43. G.E.C.U. Ridvan, A.C.A.R. Serhat, A. Kisasoz, K.A. Guler, A. Karaaslan, Influence of T6 heat treatment on A356 and A380 aluminium alloys manufactured by thixoforging combined with low superheat casting. Trans. Nonf. Met. Soc. China 28(3), 385–392 (2018)

    Article  Google Scholar 

  44. L. Liu, F. Samuel, Effect of inclusions on the tensile properties of Al–7% Si–0.35% Mg (A356.2) aluminium casting alloy. J. Mater. Sci. 33(9), 2269–2281 (1998). https://doi.org/10.1023/A:1004331219406

    Article  CAS  Google Scholar 

  45. T. Tunçay, S. Bayoğlu, The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metall. Mater. Trans. B 48(2), 794–804 (2017). https://doi.org/10.1007/s11663-016-0909-1

    Article  CAS  Google Scholar 

  46. K. Luo, Z. Wang, L. Meng, Z. Guo, Removal of iron for aluminum recovery from scrap aluminum alloy by supergravity separation with manganese addition. Chem. Eng. Proc. Process. Intensif 173, 108841 (2022). https://doi.org/10.1016/j.cep.2022.108841

    Article  CAS  Google Scholar 

  47. J.A. Taylor, Iron-containing intermetallic phases in Al-Si based casting alloys. Proc. Mater. Sci. 1, 19–33 (2012). https://doi.org/10.1016/j.mspro.2012.06.004

    Article  CAS  Google Scholar 

  48. G. Razaz, T. Carlberg, Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr. Metall. Mater. Trans. A 50(8), 3842–3854 (2019). https://doi.org/10.1007/s11661-019-05290-1

    Article  CAS  Google Scholar 

  49. H. Yavuz, O. Ertugrul, Numerical analysis of the cooling system performance and effectiveness in aluminum low-pressure die casting. Int. Metalcast. 15, 216–228 (2021). https://doi.org/10.1007/s40962-020-00446-x

    Article  CAS  Google Scholar 

  50. J. Jeon, D. Bae, Effect of cooling rate on the thermal and electrical conductivities of an A356 sand cast alloy. J. Alloys Compd. 808, 151756 (2019). https://doi.org/10.1016/j.jallcom.2019.151756

    Article  CAS  Google Scholar 

  51. C.-L. Yang, Y.-B. Li, D. Bo, H.-B. Lue, L. Feng, Effects of cooling rate on solution heat treatment of as-cast A356 alloy. Trans. Nonf. Met. Soc. China 25(10), 3189–3196 (2015). https://doi.org/10.1016/S1003-6326(15)63952-8

    Article  CAS  Google Scholar 

  52. G. Quan, L. Ren, M. Zhou, 2.13 Solutionizing and age hardening of aluminum alloys, (2017)

  53. O. Özaydın, E. Dokumacı, E. Armakan, A. Kaya, The effects of artificial ageing conditions on a356 aluminum cast alloys, European Conference on Heat Treatment, (2019)

  54. D. Apelian, S. Shivkumar, G. Sigworth, Fundamental aspects of heat treatment of cast Al-Si-Mg alloys. AFS Trans. 97, 727–742 (1989)

    Google Scholar 

  55. N. Bazilah, M. Kamal, N. Maidin, Z. Marjom, M. Ali, U. Ahmad, T6 solutionizing heat treatment parameter of A356 alloy by investment casting. IOP Conf. Ser. Mater. Sci. Eng. 834(1), 012005 (2020)

    Article  CAS  Google Scholar 

  56. S. Shivkumar, S. Ricci, C. Keller, D. Apelian, Effect of solution treatment parameters on tensile properties of cast aluminum alloys. J. Heat Treat. 8, 63–70 (1990)

    Article  CAS  Google Scholar 

  57. P. Cavaliere, E. Cerri, P. Leo, Effect of heat treatments on mechanical properties and damage evolution of thixoformed aluminium alloys. Mater. Charact. 55(1), 35–42 (2005). https://doi.org/10.1016/j.matchar.2005.02.006

    Article  CAS  Google Scholar 

  58. S. Tang, T. Sritharan, Morphology of β-AIFeSi intermetallic in AI-7Si alloy castings. Mater. Sci. Technol. 14(8), 738–742 (1998). https://doi.org/10.1179/mst.1998.14.8.738

    Article  CAS  Google Scholar 

  59. M. Wang, W. Xu, Q. Han, Effect of Heat Treatment on Controlling the Morphology of AlFeSi Phase in A380 Alloy. Int. Metalcast. 10, 516–523 (2016). https://doi.org/10.1007/s40962-016-0068-9

    Article  Google Scholar 

  60. J. Pezda, Optimization of heat treatment parameters of AlSi7Mg alloy. Materials 15(3), 1163 (2022). https://doi.org/10.3390/ma15031163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. K. Akhil, S. Arul, R. Sellamuthu, The effect of heat treatment and aging process on microstructure and mechanical properties of A356 aluminium alloy sections in casting. Proc. Eng. 97, 1676–1682 (2014). https://doi.org/10.1016/j.proeng.2014.12.318

    Article  CAS  Google Scholar 

  62. J.D. Bernardin, I. Mudawar, Validation of the quench factor technique in predicting hardness in heat treatable aluminum alloys. Int. J. Heat Mass Transf. 38(5), 863–873 (1995). https://doi.org/10.1016/0017-9310(94)00204-9

    Article  CAS  Google Scholar 

  63. D. Bo, C.-C. Liu, L. Feng, Y.-Z. Liu, Y.-B. Li, Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy. Trans. Nonf. Met. Soc. China 26(3), 634–642 (2016). https://doi.org/10.1016/S1003-6326(16)64152-3

    Article  CAS  Google Scholar 

  64. H. Möller, G. Govender, W.E. Stumpf, R. Knutsen, Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg alloy A356. Int. J. Cast Met. Res. 22(6), 417–421 (2009). https://doi.org/10.1179/174313309X436682

    Article  CAS  Google Scholar 

  65. T. Gladman, Precipitation hardening in metals. Mater. Sci. Technol. 15(1), 30–36 (1999). https://doi.org/10.1179/026708399773002782

    Article  CAS  Google Scholar 

  66. H.M. Rashed, in Fundamentals of aluminium Metallurgy ed. By Roger N. Lumley (Woodhead, 2018), p. 495-524. https://doi.org/10.1016/B978-0-08-102063-0.00013-8

  67. D.S. MacKenzie, B. Ferguson, Z. Li, Effect of quenching variables on the residual stress and distortion of a heat treated disk, in Proceedings from the 23rd HTS Conference, (Pittsburgh, PA, USA, 2005)

  68. R. Fechte-Heinen, T. Lübben, Quenching and distortion. HTM J. Heat Treat. Mater. 76(6), 390–416 (2021). https://doi.org/10.1515/htm-2021-0017

    Article  Google Scholar 

  69. J. Manickaraj, G. Liu, S. Shankar, Effect of incubation coupled with artificial aging in T6 heat treatment of A356.2 aluminum casting alloy. Int. J. Metalcast. 5(4), 17–36 (2011). https://doi.org/10.1007/BF03355520

    Article  CAS  Google Scholar 

  70. D. Zhang, L. Zheng, The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metall. Mater. Trans. A 27(12), 3983–3991 (1996). https://doi.org/10.1007/BF02595647

    Article  Google Scholar 

  71. M. Tsukuda, S. Koike, M. Harada, The heat treatment of Al-7 per cent Si-0.3 per cent Mg alloy. J. Japan Ins. Light. Met. 28(1), 8–14 (1978)

    Article  CAS  Google Scholar 

  72. L. Saberi, S.O. Alfred, M. Amiri, Effects of quenching on corrosion and hardness of aluminum alloy 7075–T6. Energies 15(22), 8391 (2022). https://doi.org/10.3390/en15228391

    Article  CAS  Google Scholar 

  73. C. Şimşir, 3D finite element simulation of steel quenching in order to determine the microstructure and residual stresses, (2008)

  74. K. Ba, J. Levesque, A. Gakwaya, S.S. Karganroudi, Residual stress investigation of quenched and artificially aged aluminum alloy 7175, T. Int. J. Adv. Manuf. Technol. 116(5), 1537–1553 (2021). https://doi.org/10.1007/s00170-021-07520-6

    Article  Google Scholar 

  75. S. Gatea, T.A.S. Tawfiq, H. Ou, Numerical and experimental investigation of formability in incremental sheet forming of particle-reinforced metal matrix composite sheets. Int. J. Adv. Manuf. Tech. 120(3), 1889–1900 (2022). https://doi.org/10.1007/s00170-022-08881-2

    Article  Google Scholar 

  76. E. Simencio, L. Canale, G. Totten, Uphill quenching of aluminium: a process overview. Int. Heat Treat. Surf. Eng. 5(1), 26–30 (2011). https://doi.org/10.1179/174951410X12851626813177

    Article  Google Scholar 

  77. D.A. Lados, D. Apelian, L. Wang, Minimization of residual stress in heat-treated Al–Si–Mg cast alloys using uphill quenching: mechanisms and effects on static and dynamic properties. Mater. Sci. Eng. A 527(13–14), 3159–3165 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ali Oktem, Ismail İcli, Yigit Sagnak, Serhat Bardakci, Yigit Catal, Zeki Gokcen and Onatus Vision Technologies for their supports.

Author information

Authors and Affiliations

Authors

Contributions

UK was involved in conceptualization, methodology, investigation and writing—original draft. YA was responsible for conceptualization, software, investigation and writing—original draft. OO contributed to investigation, writing—reviewing and editing, methodology and validation. YA helped with writing— reviewing and editing, and software. AYK assisted with writing— reviewing and editing, and investigation. OE took part in conceptualization, supervision, writing— reviewing and editing, and experimental methodology.

Corresponding authors

Correspondence to Umit Kutsal or Yagiz Arslan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsal, U., Arslan, Y., Ozaydin, O. et al. Heat Treatment Simulation of Aluminum Alloy Wheels and Investigation of Process Steps. Inter Metalcast 18, 1556–1572 (2024). https://doi.org/10.1007/s40962-023-01132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01132-4

Keywords

Navigation