Skip to main content
Log in

3D Prediction of Microstructure Formation During Solidification of Mg-RE Alloy Processed by Laser Surface Remelting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Microstructure formation is predicted during solidification of Mg–4Y–3Nd–0.5Zr (wt.%) alloy processed by laser surface remelting (LSR). A three-dimensional (3D) multiscale model is developed, which couples a thermal-fluid model to describe the molten-pool dynamics at macro-scale with a sharp interface model to describe nucleation and dendrite growth at micro-scale. A derived formula of interfacial weighted mean curvature incorporated with surface energy anisotropy realizes the simulation of eighteen-branch α-Mg dendrite growth. Microsegregation of Y, Nd and Zr elements is simulated through a solutal equilibrium approach. The simulated results show that the α-Mg matrix is depletion of Y and Nd elements and enrichment of Zr. Rapid solidification in LSR induces the α-Mg phase to solidify as an equiaxed structure without apparent dendritic branching. Under a fast cooling condition, the cooling-rate-induced thermal undercooling dominates the heterogeneous nucleation. Continuous nucleation manner is favored, with many nuclei activated. The simulated molten-pool depth, microstructure, and segregation pattern are shown to be in qualitative agreement with experimental results. The developed 3D multiscale model can contribute to a comprehensive prediction of microstructure and microsegregation formations of Mg-RE alloys during LSR and help optimize the actual LSR process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability

The raw data required and processed data to reproduce these findings are available on request.

References

  1. Q. Li, F. Guo, L. Chai, Y. Ma, L. Jiang, Q. Chen, Ch. Zhang, H. Liu, D. Zhang, B. Jiang, Redistribution and refinement of the dendrites in a Mg-Y alloy by laser surface remelting and its influence on mechanical properties. Mater. Sci. Eng. A Struct. 848, 143362 (2022). https://doi.org/10.1016/j.msea.2022.143362

    Article  CAS  Google Scholar 

  2. H. Zhu, B. Yu, J. Bian, D. Chang, L. Zheng, Effect of Ca addition on mechanical properties and the ignition temperature of cast WE43 alloys. Inter. Metalcast. Online (2023). https://doi.org/10.1007/s40962-023-00974-2

    Article  Google Scholar 

  3. D. Zheng, Zh. Li, Y. Jiang, R. Li, Y. Wu, Y. Tu, X. Cheng, P. Fu, L. Peng, H. Tang, Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition. Addit. Manuf. 57, 102957 (2022). https://doi.org/10.1016/j.addma.2022.102957

    Article  CAS  Google Scholar 

  4. X. Tong, G. Wu, M.A. Easton, M. Sun, D.H. StJohn, R. Jiang, F. Qi, Exceptional grain refinement of Mg-Zr master alloy treated by tungsten inert gas arc re-melting with ultra-high frequency pulses. Scr. Mater. 215, 114700 (2022). https://doi.org/10.1016/j.scriptamat.2022.114700

    Article  CAS  Google Scholar 

  5. Z. Zhang, P. Lin, L. Ren, Wear resistance of AZ91D magnesium alloy processed by improved laser surface remelting. Opt. Lasers Eng. 55, 237–242 (2014). https://doi.org/10.1016/j.optlaseng.2013.11.014

    Article  Google Scholar 

  6. R. Chen, H. Wang, J. Li, B. He, W. Shao, S. Zhang, Effect of laser remelting and heat treatment on microstructure and wear resistance of 2A97 Al-Li alloy. Surf. Interfaces 33, 102197 (2022). https://doi.org/10.1016/j.surfin.2022.102197

    Article  CAS  Google Scholar 

  7. Z. Liu, H. Sun, F. Xu, D. Ma, Parameters determination of grain microstructure prediction for a single crystal casting simulation and its experimental validation. Inter. Metalcast. 12, 861–869 (2018). https://doi.org/10.1007/s40962-018-0220-9

    Article  Google Scholar 

  8. M. Yang, L. Wang, W. Yan, Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. NPJ Comput. Mater. 7, 56 (2021). https://doi.org/10.1038/s41524-021-00524-6

    Article  CAS  Google Scholar 

  9. J. Wang, H. Wang, X. Cheng, B. Zhang, Y. Wu, Sh. Zhang, X. Tian, Prediction of solidification microstructure of titanium aluminum intermetallic alloy by laser surface remelting. Opt. Laser Technol. 147, 107606 (2022). https://doi.org/10.1016/j.optlastec.2021.107606

    Article  CAS  Google Scholar 

  10. Z. Yang, H. Fang, K. Jin, J. He, W. Ge, W. Yan, Modeling of microstructure evolution coupled with molten pool oscillation during electron beam welding of an Al-Cu alloy. Int. J. Heat Mass Transf. 189, 122735 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122735

    Article  CAS  Google Scholar 

  11. H.F. Guo, Z.J. Tian, Y.H. Huang, Laser surface remelting of WC–12Co coating: finite element simulations and experimental analyses. Mater. Sci. Technol. 32, 1–10 (2016). https://doi.org/10.1179/1743284715y.0000000093

    Article  Google Scholar 

  12. F. Bertelli, E.S. Meza, P.R. Goulart, N. Cheung, R. Riva, A. Garcia, Laser remelting of Al–1.5wt%Fe alloy surfaces: Numerical and experimental analyses. Opt. Lasers Eng. 49, 490–497 (2011). https://doi.org/10.1016/j.optlaseng.2011.01.007

    Article  Google Scholar 

  13. B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Predicting tensile properties of Ti–6Al–4V produced via directed energy deposition. Acta Mater. 133, 120–133 (2017). https://doi.org/10.1016/j.actamat.2017.05.025

    Article  CAS  Google Scholar 

  14. A.K. Singh, Y. Mundada, P. Bajaj, M.B. Wilms, J.P. Patil, S.K. Mishra, E.A. Jägle, A. Arora, Investigation of temperature distribution and solidification morphology in multilayered directed energy deposition of Al-0.5Sc-0.5Si alloy. Int. J. Heat Mass Transf. 186, 122492 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122492

    Article  CAS  Google Scholar 

  15. J. Zhang, G. Meng, L. Zhu, P. Xu, S. Wang, P. Xue, Z. Yang, Research on the evolution mechanism of solidified structure during laser cladding IN718 alloy. Appl. Therm. Eng. 215, 118925 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118925

    Article  CAS  Google Scholar 

  16. A. Aggarwal, A. Chouhan, S. Patel, D.K. Yadav, A. Kumar, A.R. Vinod, K.G. Prashanth, N.P. Gurao, Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: a particle-scale DEM–CFD–CA approach. Int. J. Heat Mass Transf. 158, 119989 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119989

    Article  CAS  Google Scholar 

  17. J. Akram, P. Chalavadi, D. Pal, B. Stucker, Understanding grain evolution in additive manufacturing through modeling. Addit. Manuf. 21, 255–268 (2018). https://doi.org/10.1016/j.addma.2018.03.021

    Article  Google Scholar 

  18. W. Xiao, S. Li, C. Wang, Y. Shi, J. Mazumder, H. Xing, L. Song, Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys. Mater. Des. 164, 107553 (2019). https://doi.org/10.1016/j.matdes.2018.107553

    Article  CAS  Google Scholar 

  19. S. Pan, M. Zhu, A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth. Acta Mater. 58, 340–352 (2010). https://doi.org/10.1016/j.actamat.2009.09.012

    Article  CAS  Google Scholar 

  20. J. Ogawa, Y. Natsume, Cellular automaton model for predicting the three-dimensional eutectic structure of binary alloys. Comput. Mater. Sci. 195, 110497 (2021). https://doi.org/10.1016/j.commatsci.2021.110497

    Article  CAS  Google Scholar 

  21. C. Gu, Y. Wei, X. Zhan, Y. Li, A three-dimensional cellular automaton model of dendrite growth with stochastic orientation during the solidification in the molten pool of binary alloy. Sci. Technol. Weld. Join. 22, 47–58 (2017). https://doi.org/10.1080/13621718.2016.1183962

    Article  CAS  Google Scholar 

  22. S. Geng, P. Jiang, Y. Ai, R. Chen, L. Cao, C. Han, W. Liu, Y. Liu, Cellular automaton modeling for dendritic growth during laser beam welding solidification process. J. Laser Appl. 30, 032406 (2018). https://doi.org/10.2351/1.5040605

    Article  CAS  Google Scholar 

  23. Q. Zhang, X. Shen, Z. Wang, S. Zhang, M. Zhu, Microstructure evolution during dendrite coarsening in an isothermal environment: 3-D cellular automaton modeling and experiments. J. Mater. Sci. 56, 10393–10405 (2021). https://doi.org/10.1007/s10853-021-05958-3

    Article  CAS  Google Scholar 

  24. D.R. Liu, S. Wang, W. Yan, Grain structure evolution in transition-mode melting in direct energy deposition. Mater. Des. 194, 108919 (2020). https://doi.org/10.1016/j.matdes.2020.108919

    Article  Google Scholar 

  25. Y. Luo, J. Liu, H. Ye, An analytical model and tomographic calculation of vacuum electron beam welding heat source. Vacuum 84, 857–863 (2010). https://doi.org/10.1016/j.vacuum.2009.11.015

    Article  CAS  Google Scholar 

  26. L. Wang, Y. Zhang, H.Y. Chia, W. Yan, Mechanism of keyhole pore formation in metal additive manufacturing. NPJ Comput. Mater. 22, 8 (2022). https://doi.org/10.1038/s41524-022-00699-6

    Article  Google Scholar 

  27. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristowet, Modelling of inoculation of metallic melts: application to grain refinement of aluminum by Al–Ti–B. Acta Mater. 48, 2823–2835 (2000). https://doi.org/10.1016/S1359-6454(00)00094-X

    Article  CAS  Google Scholar 

  28. Y. Xu, D. Casari, R.H. Mathiesen, Y. Li, Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification. Acta Mater. 149, 312–325 (2018). https://doi.org/10.1016/j.actamat.2018.02.058

    Article  CAS  Google Scholar 

  29. W.L. Wang, W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai, Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy. J. Mater. Sci. Technol. 119, 11–24 (2022). https://doi.org/10.1016/j.jmst.2021.12.029

    Article  CAS  Google Scholar 

  30. M. Yang, S.M. Xiong, Z. Guo, Characterization of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modeling. Acta Mater. 92, 8–17 (2015). https://doi.org/10.1016/j.actamat.2015.03.044

    Article  CAS  Google Scholar 

  31. A. Kumar, Isotropic finite-differences. J. Comput. Phys. 201, 109–118 (2004). https://doi.org/10.1016/j.jcp.2004.05.005

    Article  Google Scholar 

  32. H. Shen, J. Yan, X. Niu, Thermo-fluid-dynamic modeling of the melt pool during selective laser melting for AZ91D magnesium alloy. Materials 13, 4157 (2020). https://doi.org/10.3390/ma13184157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Lipton, M.E. Clicksman, W. Kurz, Dendrite growth in undercooled alloy metals. Mater. Sci. Eng. 65, 57–63 (1984). https://doi.org/10.1016/0025-5416(84)90199-X

    Article  CAS  Google Scholar 

  34. L. Wang, D.R. Liu, T. Chen, S. Wang, Y. Cao, Grain refinement and high thermal stability in laser surface remelted Mg–4Y–3Nd–1.5Al alloy. Scr. Mater. 222, 115000 (2023). https://doi.org/10.1016/j.scriptamat.2022.115000

    Article  CAS  Google Scholar 

  35. Y. Ali, G. You, F. Pan, M.X. Zhang, Grain coarsening of cast magnesium alloys at high cooling rate: a new observation. Metall. Mater. Trans. A 48, 474–481 (2017). https://doi.org/10.1007/s11661-016-3852-5

    Article  CAS  Google Scholar 

  36. A. Prasad, L. Yuan, P. Lee, M. Patel, D. Qiu, M. Easton, D. StJohn, Towards understanding grain nucleation under additive manufacturing solidification conditions. Acta Mater. 195, 1–12 (2020). https://doi.org/10.1016/j.actamat.2020.05.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dong-Rong Liu acknowledges the support by the National Natural Science Foundation of China (Grant No. 51971086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Rong Liu or Tian Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 350 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, DR., Wang, L. et al. 3D Prediction of Microstructure Formation During Solidification of Mg-RE Alloy Processed by Laser Surface Remelting. Inter Metalcast 18, 1329–1347 (2024). https://doi.org/10.1007/s40962-023-01124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01124-4

Keywords

Navigation