Skip to main content

Advertisement

Log in

Effects of Forming Specific Pressure and Filling Speed on Microstructure and Mechanical Properties of Thin-Walled CuSn10P1 Alloy Parts by Rheological Squeeze Forming

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Semi-solid rheological squeeze forming has distinct advantages over traditional casting and forming techniques. In this study, a high-performance thin-walled CuSn10P1 alloy was successfully produced by combining liquid-metal instantaneous undercooling-induced nucleation, semi-solid slurry homogenization treatment, and semi-solid rheological squeeze forming. The effects of the forming specific pressure (MPa) and filling speed (mm/s) on the microstructure and mechanical properties of these parts were explored in this study, and the influence of the intergranular brittle phase (α-Cu + δ-Cu41Sn11 + Cu3P) content on the mechanical characteristics was determined. CuSn10P1 alloy with a Cu13.7Sn phase exhibiting a large number of spherical or nearly spherical morphological features coexisting with the high-tin solid-solution layer morphology was discovered and prepared at a mold temperature of 485 °C, specific pressure of 165 MPa, and filling speed of 22 mm/s. Parts with this microstructure had excellent mechanical properties, including an ultimate tensile strength of 419.95 MPa, yield strength of 228.89 MPa, and an elongation of 13.71%. This study illustrates the viability of semi-solid rheological squeeze casting for manufacturing high-performance thin-walled high-tin copper alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. J.S. Park, C.W. Park, K.J. Lee, Implication of peritectic composition in historical high-tin bronze metallurgy. Mater. Charact. 60, 1268–1275 (2009). https://doi.org/10.1016/j.matchar.2009.05.009

    Article  CAS  Google Scholar 

  2. S. Jie, M. Ting-yun, Q. Hui-xuan, L. Qi-song, Electrochemical behaviors and electrodeposition of single-phase Cu–Sn alloy coating in [BMIM]Cl. Electrochim. Acta 297, 87–93 (2019). https://doi.org/10.1016/j.electacta.2018.11.189

    Article  CAS  Google Scholar 

  3. Y. Liu, L. Wang, K. Jiang, S. Yang, Electro-deposition preparation of self-standing Cu–Sn alloy anode electrode for lithium ion battery. J. Alloys Compd. 775, 818–825 (2019). https://doi.org/10.1016/j.jallcom.2018.10.207

    Article  CAS  Google Scholar 

  4. J.B. Singh, W. Cai, P. Bellon, Dry sliding of Cu–15 wt%Ni–8 wt%Sn bronze: wear behaviour and microstructures. Wear 263, 830–841 (2007). https://doi.org/10.1016/j.wear.2007.01.061

    Article  CAS  Google Scholar 

  5. S.M. So, K.Y. Kim, S.J. Lee, Y.J. Yu, H.A. Lim, M.S. Oh, Effects of Sn content and hot deformation on microstructure and mechanical properties of binary high Sn content Cu–Sn alloys. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140054

    Article  Google Scholar 

  6. M.C. Flemings, Behavior of metal alloys in the semisolid state. Metall. Trans. A 22, 957–981 (1991). https://doi.org/10.1007/BF02661090

    Article  Google Scholar 

  7. A. Rassili, M. Robelet, R. Bigot, Thixoforming of steel: parameters and means for industrialization. Solid State Phenom. 141, 213–218 (2008). https://doi.org/10.4028/www.scientific.net/SSP.141-143.213

    Article  Google Scholar 

  8. K.N. Campo, C.C. de Freitas, S.-C. Moon, R. Dippenaar, R. Caram, In-situ microstructural observation of Ti–Cu alloys for semi-solid processing. Mater. Charact. 145, 10–19 (2018). https://doi.org/10.1016/j.matchar.2018.08.016

    Article  CAS  Google Scholar 

  9. M. Kiuchi, R. Kopp, Mushy/semi-solid metal forming technology—present and future. CIRP Ann. 51, 653–670 (2002). https://doi.org/10.1016/s0007-8506(07)61705-3

    Article  Google Scholar 

  10. J. Mathew, A. Mandal, S.D. Kumar, S. Bajpai, M. Chakraborty, G.D. West, P. Srirangam, Effect of semi-solid forging on microstructure and mechanical properties of in-situ cast Al–Cu–TiB2 composites. J. Alloys Compd. 712, 460–467 (2017). https://doi.org/10.1016/j.jallcom.2017.04.113

    Article  CAS  Google Scholar 

  11. M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, N. Haghdadi, Microstructure evolution and mechanical properties of backward thixoextruded 7075 aluminum alloy. Mater. Des. 1980–2015(36), 557–563 (2012). https://doi.org/10.1016/j.matdes.2011.11.061

    Article  CAS  Google Scholar 

  12. H.R. Abedi, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, A.A. Roostaei, The semi-solid tensile deformation behavior of wrought AZ31 magnesium alloy. Mater. Des. 31, 4386–4391 (2010). https://doi.org/10.1016/j.matdes.2010.05.004

    Article  CAS  Google Scholar 

  13. S. Lü, S. Wu, X. Yang, L. Hao, W. Guo, X. Fang, Microstructure and mechanical properties of Mg97Zn1Y2 alloy reinforced with LPSO structure produced by semisolid squeeze casting. Mater. Sci. Eng. A 732, 359–367 (2018). https://doi.org/10.1016/j.msea.2018.07.025

    Article  CAS  Google Scholar 

  14. Q.Y. Pan, S. Wiesner, D. Apelian, Application of the continuous rheoconversion process (CRP) to low temperature HPDC-part I: microstructure. Solid State Phenom. 116, 402–405 (2006). https://doi.org/10.4028/www.scientific.net/SSP.116-117.402

    Article  Google Scholar 

  15. Q. Pan, M. Findon, D. Apelian, The continuous rheoconversion process (CRP): a novel SSM approach. In: 8th International Conference on Semi-Solid Processing of Alloys and Composites (2004).

  16. G. Xiao, J. Jiang, Y. Wang, Y. Liu, Y. Zhang, Microstructure and mechanical properties of nickel-based superalloy GH4037 parts formed by thixoforming. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.139196

    Article  Google Scholar 

  17. Y. Meng, S. Sugiyama, J. Yanagimoto, Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel. J. Mater. Process. Technol. 212, 1731–1741 (2012). https://doi.org/10.1016/j.jmatprotec.2012.04.003

    Article  CAS  Google Scholar 

  18. Y. Meng, S. Sugiyama, M. Soltanpour, J. Yanagimoto, Effects of predeformation and semi-solid processing on microstructure and mechanical properties of Cr–V–Mo steel. J. Mater. Process. Technol. 213, 426–433 (2013). https://doi.org/10.1016/j.jmatprotec.2012.09.021

    Article  CAS  Google Scholar 

  19. J. Jiang, G. Xiao, Y. Wang, Y. Qi, Microstructure evolution of wrought nickel based superalloy GH4037 in the semi-solid state. Mater. Charact. 141, 229–237 (2018). https://doi.org/10.1016/j.matchar.2018.04.057

    Article  CAS  Google Scholar 

  20. M. Cao, Z. Wang, Q. Zhang, Microstructure-dependent mechanical properties of semi-solid copper alloys. J. Alloys Compd. 715, 413–420 (2017). https://doi.org/10.1016/j.jallcom.2017.03.360

    Article  CAS  Google Scholar 

  21. L. Jia, X. Lin, H. Xie, Z.-L. Lu, X. Wang, Abnormal improvement on electrical conductivity of Cu–Ni–Si alloys resulting from semi-solid isothermal treatment. Mater. Lett. 77, 107–109 (2012). https://doi.org/10.1016/j.matlet.2012.03.010

    Article  CAS  Google Scholar 

  22. G. Xiao, J. Jiang, Y. Wang, Y. Liu, Y. Zhang, Effects of forming temperature, soaking time and dwell time on the microstructure and mechanical properties of thixoformed nickel-based superalloy parts. J. Mater. Res. Technol. JMRT 10, 1250–1261 (2021). https://doi.org/10.1016/j.jmrt.2020.12.111

    Article  CAS  Google Scholar 

  23. Z.F. Huang, J.D. Xing, C. Guo, Microstructure and properties of semisolid hypereutectic high chromium cast iron prepared by slope cooling body method. Ironmak. Steelmak. 37, 607–611 (2013). https://doi.org/10.1179/030192309x12549935902266

    Article  Google Scholar 

  24. S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert, Additive manufacturing of Cu–10Sn bronze. Mater. Lett. 156, 202–204 (2015). https://doi.org/10.1016/j.matlet.2015.05.076

    Article  CAS  Google Scholar 

  25. P. Han, F. Xiao, W. Zou, B. Liao, Influence of hot pressing temperature on the microstructure and mechanical properties of 75% Cu–25% Sn alloy. Mater. Des. 53, 38–42 (2014). https://doi.org/10.1016/j.matdes.2013.06.024

    Article  CAS  Google Scholar 

  26. Z. Mao, D.Z. Zhang, J. Jiang, G. Fu, P. Zhang, Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu–15Sn high-tin bronze. Mater. Sci. Eng. A 721, 125–134 (2018). https://doi.org/10.1016/j.msea.2018.02.051

    Article  CAS  Google Scholar 

  27. E. Erzi, M. Tiryakioğlu, Feeding distance of tin bronze castings: intrinsic and extrinsic estimates. Mater. Sci. Technol. 35, 2211–2216 (2019). https://doi.org/10.1080/02670836.2019.1666226

    Article  CAS  Google Scholar 

  28. X. Liu, J. Luo, X. Wang, L. Wang, J. Xie, Columnar grains-covered small grains Cu–Sn alloy prepared by two-phase zone continuous casting. Prog. Nat. Sci. Mater. Int. 23, 94–101 (2013). https://doi.org/10.1016/j.pnsc.2013.01.014

    Article  Google Scholar 

  29. A.P. Ventura, C.A. Wade, G. Pawlikowski, M. Bayes, M. Watanabe, W.Z. Misiolek, Mechanical properties and microstructural characterization of Cu-4.3 Pct Sn fabricated by selective laser melting. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 48, 178–187 (2016). https://doi.org/10.1007/s11661-016-3779-x

    Article  CAS  Google Scholar 

  30. J.Y. Yang, G.H. Kim, W.J. Kim, High-strain-rate solute drag creep in a Cu-22%Sn alloy (Cu17Sn3) with near peritectic composition. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110325

    Article  Google Scholar 

  31. B.B. Straumal, A.R. Kilmametov, B. Baretzky, O.A. Kogtenkova, P.B. Straumal, L. Lityńska-Dobrzyńska, R. Chulist, A. Korneva, P. Zięba, High pressure torsion of Cu–Ag and Cu–Sn alloys: limits for solubility and dissolution. Acta Mater. 195, 184–198 (2020). https://doi.org/10.1016/j.actamat.2020.05.055

    Article  CAS  Google Scholar 

  32. Y. Li, L. Li, B. Geng, Q. Wang, R. Zhou, X. Wu, H. Xiao, Microstructure characteristics and strengthening mechanism of semisolid CuSn10P1 alloys. Mater. Charact. (2021). https://doi.org/10.1016/j.matchar.2021.110898

    Article  Google Scholar 

  33. Z. He, R. Zhou, Y. Li, T. Liu, W. Xiong, Z. Liu, C. Wang, H. Xiao, Effect of wall thickness on microstructure uniformity and properties of CuSn10P1 alloy in semi-solid rheological squeeze casting. Rare Metal Mat. Eng. 51, 4157–4165 (2022)

    CAS  Google Scholar 

  34. Z. Liu, R. Zhou, W. Xiong, Z. He, T. Liu, Y. Li, Compressive rheological behavior and microstructure evolution of a semi-solid CuSn10P1 alloy at medium temperature and low strain. Metals (2022). https://doi.org/10.3390/met12010143

    Article  Google Scholar 

  35. W. Xiong, R. Zhou, Z. Liu, Y. Li, Research on neural network genetic algorithm optimization in the preparation of CuSn10P1 semi-solid slurry with the fully enclosed melt-constrained cooling inclined plate. J. Adv. Mech. Des. Syst. Manuf. (2021). https://doi.org/10.1299/jamdsm.2021jamdsm0026

    Article  Google Scholar 

  36. Q. Wang, R. Zhou, Y. Li, B. Geng, Characteristics of dynamic recrystallization in semi-solid CuSn10P1 alloy during hot deformation. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2019.109996

    Article  Google Scholar 

  37. Y. Zhou, Y. Cui, Q. Zhang, Z. Yang, Y. Li, H. Xiao, Effect of solution temperature on microstructure and properties of thixotropic back-extruded tin-bronze shaft sleeve. Materials (Basel) (2022). https://doi.org/10.3390/ma15155254

    Article  PubMed  PubMed Central  Google Scholar 

  38. P. Das, P. Dutta, Phase field modelling of microstructure evolution and ripening driven grain growth during cooling slope processing of A356 Al alloy. Comput. Mater. Sci. 125, 8–19 (2016). https://doi.org/10.1016/j.commatsci.2016.08.022

    Article  CAS  Google Scholar 

  39. V. Chakkravarthy, M. Lakshmanan, P. Manojkumar, R. Prabhakaran, Crystallographic orientation and wear characteristics of TiN, SiC, Nb embedded Al7075 composite. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.130936

    Article  Google Scholar 

  40. C. Wang, Z. Dong, K. Li, M. Sun, J. Wu, K. Wang, G. Wu, W. Ding, A novel process for grain refinement of Mg–RE alloys by low frequency electro-magnetic stirring assisted near-liquidus squeeze casting. J. Mater. Process. Technol. (2022). https://doi.org/10.1016/j.jmatprotec.2022.117537

    Article  Google Scholar 

  41. Y. Yang, P. Tan, Y. Sui, Y. Jiang, R. Zhou, Influence of Zr content on microstructure and mechanical properties of As-cast Al–Zn–Mg–Cu alloy. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.158920

    Article  Google Scholar 

  42. D.V. Kudashov, H. Baum, U. Martin, M. Heilmaier, H. Oettel, Microstructure and room temperature hardening of ultra-fine-grained oxide-dispersion strengthened copper prepared by cryomilling. Mater. Sci. Eng. A 387–389, 768–771 (2004). https://doi.org/10.1016/j.msea.2004.05.049

    Article  CAS  Google Scholar 

  43. H. Xiao, Z. Duan, N. Li, Y. Li, R. Zhou, D. Lu, Y. Jiang, Mechanical properties of thixo-extruded copper alloy. Rare Metal Mat. Eng. 48, 531–537 (2019)

    CAS  Google Scholar 

  44. A.E. Nassef, A.I. Alateyah, M.A. El-Hadek, W.H. El-Garaihy, Mechanical behavior and fracture surface characterization of liquid-phase sintered Cu–Sn powder alloys. Adv. Mater. Lett. 8, 717–722 (2017). https://doi.org/10.5185/amlett.2017.1485

    Article  CAS  Google Scholar 

  45. H. Xiao, Y. Cui, C. Xiong, L. Chen, X. Zhang, Y. Li, R. Zhou, Effect of annealing temperature on microstructure and properties of thixo-extruded tin bronze bushing. Rare Metal Mat. Eng. 50, 4119–4127 (2021)

    CAS  Google Scholar 

  46. H. Xiao, Z. Duan, N. Li, C. Xiong, R. Zhou, D. Lu, Y. Jiang, Effect of heat treatment temperature on microstructure and mechanical properties of semi-solid extruded tin bronze. Rare Metal Mat. Eng. 48, 235–241 (2019)

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of China (Grant No. 51765026) and Analysis and Testing Fund of Kunming University of Science and Technology (Grant No. 2021P20201130019)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongfeng Zhou or Yongkun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Zhou, R., Liu, Z. et al. Effects of Forming Specific Pressure and Filling Speed on Microstructure and Mechanical Properties of Thin-Walled CuSn10P1 Alloy Parts by Rheological Squeeze Forming. Inter Metalcast 18, 1438–1454 (2024). https://doi.org/10.1007/s40962-023-01109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01109-3

Keywords

Navigation