Skip to main content

Advertisement

Log in

Effect of Nano-Sized SiO2 Particles Addition on Microstructure and Mechanical Properties of As-Cast Ductile Iron

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In order to improve the mechanical properties of ductile iron, different contents of SiO2 particles are added into ductile iron in the casting process. The microstructure and mechanical properties of ductile iron are studied. It is found that SiO2 particles can promote the heterogeneous nucleation of austenite, which can indirectly promote the nucleation of graphite, ferrite and cementite. SiO2 particles can also inhibit the growth of austenite, which can further refine ferrite and cementite during the phase transformation. Finally, the average grain size of ferrite decreased to 27.95 μm and the interlamellar spacing of pearlite decreased to 211 nm in sample 0.5S. A large number of granular pearlite appeared in sample 0.75S. The above changes of microstructure affect together the properties of ductile iron, so that the strength, plasticity and toughness were enhanced simultaneously. Ductile iron has the best tensile strength (495 MPa), elongation (26.1%) and impact absorbed energy (22.06 J) with a SiO2 content of 0.75 wt%. With the increase of SiO2 content, the cleavage steps on the tensile and impact fracture surfaces decreased gradually and more and more dimples appeared, which proved that cleavage fracture gradually transformed into ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. S.F. Liu, Y. Chen, X. Chen, H.M. Miao, Microstructures and mechanical properties of helical bevel gears made by Mn–Cu alloyed austempered ductile iron. J. Iron Steel Res. Int. 19, 36–42 (2012). https://doi.org/10.1016/S1006-706X(12)60057-0

    Article  CAS  Google Scholar 

  2. J.J. Cui, L.Q. Chen, Influence of austempering process on microstructures and mechanical properties of V-containing alloyed ductile iron. J. Iron Steel Res. Int. 25, 81–89 (2018). https://doi.org/10.1007/s42243-017-0010-2

    Article  Google Scholar 

  3. G.H. Wang, Y.X. Li, Development of new ductile iron with super-high thermal conductivity and elongation. J. Iron Steel Res. Int. 29, 462–473 (2022). https://doi.org/10.1007/s42243-021-00581-7

    Article  Google Scholar 

  4. M. Hafiz, Mechanical properties of SG-iron with different matrix structure. J. Mater. Sci. 36, 1293–1300 (2001). https://doi.org/10.1023/A:1004866817049

    Article  CAS  Google Scholar 

  5. R.A. Gonzaga, Influence of ferrite and pearlite content on mechanical properties of ductile cast irons. Mater. Sci. Eng. A 567, 1–8 (2013). https://doi.org/10.1016/j.msea.2012.12.089

    Article  CAS  Google Scholar 

  6. H. Kawata, O. Umezawa, Effect of pearlite volume fraction on two-step ductile to brittle transition in ferrite + pearlite structure steel sheets. ISIJ Int. 59(7), 1344–1353 (2019). https://doi.org/10.2355/isijinternational.ISIJINT-2018-764

    Article  CAS  Google Scholar 

  7. Y. Yürektürk, M. Baydoğan, Effect of microstructural features on mechanical and magnetic properties of austempered high-silicon ductile irons. ISIJ Int. 57(11), 2049–2057 (2017). https://doi.org/10.2355/isijinternational.ISIJINT-2017-167

    Article  Google Scholar 

  8. H. Zhang, W.X. Wang, F. Chang, C.L. Li, S.L. Shu, Z.F. Wang, X. Han, Q. Zou, F. Qiu, Q.C. Jiang, Microstructure manipulation and strengthening mechanisms of 40Cr steel via trace TiC nanoparticles. Mater. Sci. Eng. A 822, 141693 (2021). https://doi.org/10.1016/j.msea.2021.141693

    Article  CAS  Google Scholar 

  9. X. Yao, Z. Zhang, Y.F. Zheng, C. Kong, M.Z. Quadir, J.M. Liang, Y.H. Chen, P. Munroe, D.L. Zhang, Effects of SiC nanoparticle content on the microstructure and tensile mechanical properties of ultrafine grained AA6063-SiCnp nanocomposites fabricated by powder metallurgy. J. Mater. Sci. Technol. 33, 1023–1030 (2017). https://doi.org/10.1016/j.jmst.2016.09.022

    Article  CAS  Google Scholar 

  10. S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, J. Gu Lee, Effect of nano-sized TiC particle addition on microstructure and mechanical properties of SA-106B carbon steel. Mater. Sci. Eng. A 643, 37–46 (2015). https://doi.org/10.1016/j.msea.2015.07.026

    Article  CAS  Google Scholar 

  11. M. Razavi, M.R. Rahimipour, A.H. Rajabi-Zamani, Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron. Mater. Sci. Eng. A 454–455, 144–147 (2007). https://doi.org/10.1016/j.msea.2006.11.035

    Article  CAS  Google Scholar 

  12. B.X. Wang, F. Qiu, W.W. Cui, Y.P. Jin, Y. Zhang, Z.R. Hu, G.C. Barber, Microstructure and tensile properties of graphite ductile iron improved by minor amount of dual-phased TiC–TiB2 nanoparticles. Adv. Eng. Mater. 23, 2100246 (2021). https://doi.org/10.1002/adem.202100246

    Article  CAS  Google Scholar 

  13. D. Turnbull, B. Vonnegut, Nucleation catalysis. Ind. Eng. Chem. 44(6), 1292–1298 (1952). https://doi.org/10.1021/ie50510a031

    Article  CAS  Google Scholar 

  14. B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1(7), 1987–1995 (1970). https://doi.org/10.1007/BF02642799

    Article  CAS  Google Scholar 

  15. A.F. Wright, A.J. Leadbetter, The structures of the β-cristobalite phases of SiO2 and AlPO4. Philos. Mag. 31(6), 1391–1401 (1975). https://doi.org/10.1080/00318087508228690

    Article  CAS  Google Scholar 

  16. D.Q. Yi, P.C. Yu, B. Hu, H.Q. Liu, B. Wang, Y. Jiang, Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater. Des. 52, 572–579 (2013). https://doi.org/10.1016/j.matdes.2013.05.097

    Article  CAS  Google Scholar 

  17. J.J. Park, S.M. Hong, E.K. Park, K.Y. Kim, M.K. Lee, C.K. Rhee, Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles. Mater. Sci. Eng. A 613, 217–223 (2014). https://doi.org/10.1016/j.msea.2014.06.103

    Article  CAS  Google Scholar 

  18. B.X. Wang, Y. Zhang, F. Qiu, M. Hu, W.W. Cui, Z.R. Hu, G.C. Barber, Simultaneously enhanced hardness and toughness of normalized graphite ductile irons by TiC–TiB2 nanoparticles. Mater. Lett. 291, 129597 (2021). https://doi.org/10.1016/j.matlet.2021.129597

    Article  CAS  Google Scholar 

  19. A. Pires, S. Simões, L. Michels, E. Ott, C. Hartung, C.S. Ribeiro, Microstructural characterization of spheroidal graphite irons: a study of the effect of preconditioning treatment. Metals 13, 5 (2022). https://doi.org/10.3390/met13010005

    Article  CAS  Google Scholar 

  20. O.H. Ibrahim, E.S. Elshazly, Microstructural effects on fracture behavior of gerritic and martensitic structural steels. J. Mater. Eng. Perform. 22, 584–589 (2013). https://doi.org/10.1007/s11665-012-0266-4

    Article  CAS  Google Scholar 

  21. K. Jiang, Y.D. Qu, J.H. You, R.D. Li, Absorbed energy distribution of ductile Ni-resist alloyed iron under instrumented impact load at low temperatures. ISIJ Int. 56(7), 1285–1288 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2016-049

    Article  CAS  Google Scholar 

  22. N. Pan, B. Song, Q.J. Zhai, B. Wen, Effect of lattice disregistry on the heterogeneous nucleation catalysis of liquid steel. J. Univ. Sci. Technol. Beijing 32(2), 179–190 (2010). https://doi.org/10.13374/j.issn1001-053x.2010.02.020

    Article  CAS  Google Scholar 

  23. G. Rivera, R. Boeri, J. Sikora, Revealing and characterising solidification structure of ductile cast iron. Mater. Sci. Technol. 18, 691–697 (2002). https://doi.org/10.1179/026708302225003668

    Article  CAS  Google Scholar 

  24. F. Qiu, H. Zhang, C.L. Li, Z.F. Wang, F. Chang, H.Y. Yang, C.D. Li, X. Han, Q.C. Jiang, Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Mater. Sci. Eng. A 819, 141485 (2021). https://doi.org/10.1016/j.msea.2021.141485

    Article  CAS  Google Scholar 

  25. M. Riebisch, B. Pustal, A. Bührig-Polaczek, Influence of carbide-promoting elements on the microstructure of high-silicon ductile iron. Int. J. Metalcast. 14, 1152–1161 (2020). https://doi.org/10.1007/s40962-020-00442-1

    Article  CAS  Google Scholar 

  26. G. Alonso, P. Larrañaga, D.M. Stefanescu, E. De la Fuente, A. Natxiondo, R. Suarez, Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. Int. J. Metalcast. 11, 14–26 (2017). https://doi.org/10.1007/s40962-016-0094-7

    Article  Google Scholar 

  27. G. Alonso, T. Tokarski, D.M. Stefanescu, M. Górny, G. Cios, R. Suarez, On the crystallography of the Mg–Si–Al nitride nuclei and of the graphite/nitride interface in spheroidal graphite iron. Carbon 199, 170–180 (2022). https://doi.org/10.1016/j.carbon.2022.07.045

    Article  CAS  Google Scholar 

  28. J.J. Qing, S. Lekakh, M.Z. Xu, D. Field, Formation of complex nuclei in graphite nodules of cast iron. Carbon 171, 276–288 (2021). https://doi.org/10.1016/j.carbon.2020.08.022

    Article  CAS  Google Scholar 

  29. M.Y. Seok, I.C. Choi, J. Moon, S. Kim, U. Ramamurty, J. Jang, Estimation of the Hall–Petch strengthening coefficient of steels through nanoindentation. Scr. Mater. 87, 49–52 (2014). https://doi.org/10.1016/j.scriptamat.2014.05.004

    Article  CAS  Google Scholar 

  30. Z.H. Wang, X. Zhang, F.L. Xu, K.C. Qian, K.M. Chen, Effect of nodularity on mechanical properties and fracture of ferritic spheroidal graphite iron. China Foundry 16(6), 386–392 (2019). https://doi.org/10.1007/s41230-019-9080-z

    Article  CAS  Google Scholar 

  31. J. Laine, K. Jalava, J. Vaara, K. Soivio, T. Frondelius, J. Orkas, The mechanical properties of ductile iron at intermediate temperatures: the effect of silicon content and pearlite fraction. Int. J. Metalcast. 15, 538–547 (2021). https://doi.org/10.1007/s40962-020-00473-8

    Article  CAS  Google Scholar 

  32. T. Wu, M.Z. Wang, Y.W. Gao, X.P. Li, Y.C. Zhao, Q. Zou, Effects of plastic warm deformation on cementite spheroidization of a eutectoid steel. J. Iron Steel Res. Int. 19(8), 60–66 (2012). https://doi.org/10.1016/S1006-706X(12)60140-X

    Article  Google Scholar 

  33. X.N. Zhang, Y.D. Qu, R.D. Li, Fracture mechanism of ferritic ductile iron under instrumented impact load at low temperatures. ISIJ Int. 54(10), 2309–2313 (2014). https://doi.org/10.2355/isijinternational.54.2309

    Article  CAS  Google Scholar 

  34. X.N. Zhang, Y.D. Qu, R.D. Li, Low temperature impact toughness and fracture analysis of EN-GJS-400-18-LT ductile iron under instrumented impact load. J. Iron Steel Res. Int. 22(9), 864–869 (2015). https://doi.org/10.1016/S1006-706X(15)30082-0

    Article  Google Scholar 

  35. H. Qiu, T. Hanamura, S. Torizuka, Influence of grain size on the ductile fracture toughness of ferritic steel. ISIJ Int. 54(8), 1958–1964 (2014). https://doi.org/10.2355/isijinternational.54.1958

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Qiwen Zhou and Wendong Xu (Shenyang University of Technology, China) for the samples producted and useful discussions.

Funding

This research was supported by the National Natural Science Foundation of China (No. 52204394) and Scientific Research Funding Project of The Education Department of Liaoning Province (Nos. LJKZ0116 and LJKZ0118).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YZ, WZ and GL. The first draft of the manuscript was written by YZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Zhang or Yingdong Qu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, W., Li, G. et al. Effect of Nano-Sized SiO2 Particles Addition on Microstructure and Mechanical Properties of As-Cast Ductile Iron. Inter Metalcast 18, 1293–1308 (2024). https://doi.org/10.1007/s40962-023-01106-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01106-6

Keywords

Navigation