Skip to main content

Advertisement

Log in

Effect of Nb/V Alloying on the Microstructure and Mechanical Properties of SiMo Ductile Iron

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Three kinds of SiMo ductile iron samples with Nb/V alloying were prepared by the sand casting method. The microstructure and mechanical properties were evaluated via optical microscopy (OM), scanning electron microscopy (SEM) and an electronic universal testing machine. The metallographic analysis showed that Nb/V addition had a negligible effect on the graphite morphology and nodularity of the SiMo ductile iron, but the pearlite content increased and the size of the ferrite decreased. There are many Nb/V-rich carbides inside the ferrite grains and at the interface of the pearlite in ductile iron containing Nb/V. The tensile testing results showed that the SiMo ductile iron sample with 0.17% V addition had better mechanical properties at room and high temperatures. For SiMo ductile iron, the tensile strength (Rm), yield strength (Rp0.2), elongation after fracture (A) and Brinell hardness at room temperature are 631 MPa, 442 MPa, 8.9% and 222 HBW, respectively. The Rm, Rp0.2 and A at 650 °C were 202 MPa, 131 MPa and 21.8%, respectively. The better high-temperature performance of the sample containing 0.17% V is mainly attributed to the ability of V element to promote the precipitation and refinement of carbides, which can effectively improve the high-temperature strength of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10.
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. D.M. Abdelrahim, E.E. Ateia, A.A. Nofal, Effect of molybdenum contents on microstructure and high-temperature wear behavior of SiMo ductile iron. Int. J. Metalcast. 18(1), 530–545 (2024)

    Article  CAS  Google Scholar 

  2. S.N. Lekakh, V.A. Athavale, L. Bartlett, L. Godlewski, M. Li, Effect of micro-structural dispersity of SiMo ductile iron on thermal cycling performance. Int. J. Metalcast. 17(3), 1451–1466 (2022). https://doi.org/10.1007/s40962-022-00915-5

    Article  CAS  Google Scholar 

  3. M. Bartošák, J. Horváth, Isothermal low-cycle fatigue, fatigue–creep and thermo-mechanical fatigue of SiMo 4.06 cast iron: Damage mechanisms and life prediction. Eng. Fracture Mech. 288, 109316 (2023)

    Article  Google Scholar 

  4. S.N. Lekakh, A. Bofah, L.A. Godlewski, M. Li, Effect of micro-structural dispersity of SiMo ductile iron on high temperature performance during static oxidation. Metals 12(4), 661 (2022)

    Article  CAS  Google Scholar 

  5. S.N. Lekakh, C. Johnson, L. Godlewski, M. Li, Control of high-temperature static and transient thermomechanical behavior of SiMo ductile iron by Al alloying. Int. J. Metalcast. 17(1), 22–38 (2022). https://doi.org/10.1007/s40962-022-00768-y

    Article  CAS  Google Scholar 

  6. S.N. Lekakh, A. Bofah, W.-T. Chen, L. Godlewski, M. Li, Prevention of high-temperature surface degradation in SiMo Cast irons by Cr and Al alloying. Metall. and Mater. Trans. B. 51(6), 2542–2554 (2020). https://doi.org/10.1007/s11663-020-01975-w

    Article  ADS  CAS  Google Scholar 

  7. R. González-Martínez, U. de La Torre, A. Ebel, J. Lacaze, J. Sertucha, Effects of high silicon contents on graphite morphology and room temperature mechanical properties of as-cast ferritic ductile cast irons. Part II–Mechanical properties. Mater. Sci. Eng. A 712, 803–811 (2018)

    Article  Google Scholar 

  8. A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Balloy, J. Favergeon, Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron (in English). Mat Sci Eng a-Struct 605, 222–228 (2014). https://doi.org/10.1016/j.msea.2014.03.057

    Article  CAS  Google Scholar 

  9. P. Weiß, A. Tekavčič, A. Bührig-Polaczek, Mechanistic approach to new design concepts for high silicon ductile iron. Mater. Sci. Eng. A 713, 67–74 (2018). https://doi.org/10.1016/j.msea.2017.12.012

    Article  CAS  Google Scholar 

  10. L. Song, E. Guo, L. Wang, D. Liu, Effects of silicon on mechanical properties and fracture toughness of heavy-section ductile cast iron. Metals 5(1), 150–161 (2015). https://doi.org/10.3390/met5010150

    Article  Google Scholar 

  11. D. Franzen, B. Pustal, A. Bührig-Polaczek, Mechanical properties and impact toughness of molybdenum alloyed ductile iron. Int. J. Metalcast. 15(3), 983–994 (2020). https://doi.org/10.1007/s40962-020-00533-z

    Article  CAS  Google Scholar 

  12. J. Roučka, E. Abramová, V. Kaňa, Properties of type SiMo ductile irons at high temperatures. Arch. Metal. Mater. 63(2), 601–607 (2018)

    Google Scholar 

  13. Nurjaman, F., Sumardi, S., Shofi, A., Aryati, M., & Suharno, B. (2016,). Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition. In: AIP Conference Proceedings (Vol. 1711, No. 1). AIP Publishing..

  14. L. Magnusson Åberg, C. Hartung, Solidification of SiMo nodular cast iron for high temperature applications. Trans. Indian Inst. Metals 65(6), 633–636 (2012)

    Article  Google Scholar 

  15. M. Ekström, S. Jonsson, High-temperature mechanical- and fatigue properties of cast alloys intended for use in exhaust manifolds. Mater. Sci. Eng. A 616, 78–87 (2014). https://doi.org/10.1016/j.msea.2014.08.014

    Article  CAS  Google Scholar 

  16. H.-J. Kühn, B. Rehmer, B. Skrotzki, Thermomechanical fatigue of heat-resistant austenitic cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S). Int. J. Fatigue 99, 295–302 (2017). https://doi.org/10.1016/j.ijfatigue.2017.01.009

    Article  CAS  Google Scholar 

  17. J. Lacaze, P. Larrañaga, I. Asenjo, R. Suárez, J. Sertucha, Influence of 1 wt-% addition of Ni on structural and mechanical properties of ferritic ductile irons. Mater. Sci. Technol. 28(5), 603–608 (2013). https://doi.org/10.1179/1743284711y.0000000100

    Article  ADS  Google Scholar 

  18. M. Ekström, P. Szakalos, S. Jonsson, Influence of Cr and Ni on high-temperature corrosion behavior of ferritic ductile cast iron in air and exhaust gases. Oxid. Met. 80(5–6), 455–466 (2013). https://doi.org/10.1007/s11085-013-9389-8

    Article  CAS  Google Scholar 

  19. E. Konca, K. Tur, E. Koç, Effects of alloying elements (Mo, Ni, and Cu) on the austemperability of GGG-60 ductile cast iron. Metals 7(8), 320 (2017). https://doi.org/10.3390/met7080320

    Article  CAS  Google Scholar 

  20. A. Niklas, M.Á. Arenas, S. Méndez, A. Conde, R. González-Martínez, J.J. de Damborenea, J. Sertucha, Effect of alloying with Ni, Cr and Al on the atmospheric and electrochemical corrosion resistance of ferritic ductile cast irons. Rev. Metal. 58(1), e216–e216 (2022). https://doi.org/10.3989/revmetalm.216

    Article  CAS  Google Scholar 

  21. P. Weiß, J. Brachmann, A. Bührig-Polaczek, S.F. Fischer, Influence of nickel and cobalt on microstructure of silicon solution strengthened ductile iron. Mater. Sci. Technol. 31(12), 1479–1485 (2014). https://doi.org/10.1179/1743284714y.0000000735

    Article  ADS  Google Scholar 

  22. X. Chen et al., Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron. Mater. Sci. Eng. A 688, 416–428 (2017). https://doi.org/10.1016/j.msea.2017.01.032

    Article  CAS  Google Scholar 

  23. M. Ahmed, M. Soliman, M. Youssef, R. Bähr, A. Nofal, Effect of niobium on the microstructure and mechanical properties of alloyed ductile irons and austempered ductile irons. Metals 11(5), 703 (2021). https://doi.org/10.3390/met11050703

    Article  CAS  Google Scholar 

  24. N.H.K. Luan, K. Koizumi, T. Okuyama, Influence of Nb and V addition on abrasive and impact wear properties of 16%Cr–3%Mo white cast iron. Mater. Trans. 61(12), 2363–2370 (2020). https://doi.org/10.2320/matertrans.F-M2020852

    Article  CAS  Google Scholar 

  25. L. Sun et al., Effect of V, Nb, and Ti microalloying on low–temperature impact fracture behavior of non–quenched and tempered forged steel. Mater. Sci. Eng. A 879, 145299 (2023)

    Article  CAS  Google Scholar 

  26. C.F. Han, Y.F. Sun, Y. Wu, Y.H. Ma, Effects of vanadium and austempering temperature on microstructure and properties of CADI. Metallograph. Microstruct., Anal. 4(3), 135–145 (2015). https://doi.org/10.1007/s13632-015-0197-1

    Article  CAS  Google Scholar 

  27. J.P. Shingledecker, P.J. Maziasz, N.D. Evans, M.J. Pollard, Creep behavior of a new cast austenitic alloy, (in English). Int J Pres Ves Pip 84(1–2), 21–28 (2007). https://doi.org/10.1016/j.ijpvp.2006.09.014

    Article  CAS  Google Scholar 

  28. M. Rezvani, R.A. Harding, J. Campbell, The effect of vanadium in as-cast ductile iron. Int. J. Cast Met. Res. 10(1), 1–15 (2016). https://doi.org/10.1080/13640461.1997.11819213

    Article  Google Scholar 

  29. A.S. Kandemir, R. Gecu, Influence of vanadium content and cooling rate on the characteristics of vanadium-alloyed spheroidal graphite cast irons. J. Alloys Comp. 934, 168017 (2023). https://doi.org/10.1016/j.jallcom.2022.168017

    Article  CAS  Google Scholar 

  30. S. Dymek, M. Blicharski, J. Morgiel, E. FraŚ, TEM investigation of ductile iron alloyed with vanadium. J. Microsc. 237(3), 461–464 (2010). https://doi.org/10.1111/j.1365-2818.2009.03294.x

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  31. H. Bakhshinezhad, A. Honarbakhshraouf, H. Abdollah-Pour, A study of effect of vanadium on microstructure and mechanical properties of As-cast and austempered ductile iron. Phys. Met. Metall. 120(5), 441–446 (2019). https://doi.org/10.1134/s0031918x19050016

    Article  CAS  Google Scholar 

  32. M. Riebisch, B. Pustal, A. Bührig-Polaczek, Impact of carbide-promoting elements on the mechanical properties of solid-solution-strengthened ductile iron. Int. J. Metalcast. 14(2), 365–374 (2019). https://doi.org/10.1007/s40962-019-00358-5

    Article  CAS  Google Scholar 

  33. J. Yoo et al., Effects of V or Cu addition on high-temperature tensile properties of high-Ni-containing austenitic cast steels used for high-performance turbo-charger housings. Met. Mater. Int. 25(2), 285–294 (2018). https://doi.org/10.1007/s12540-018-0193-5

    Article  CAS  Google Scholar 

  34. V. Raghavan, Fe-Nb-V (Iron-Niobium-Vanadium). J. Phase Equilib. Diffus. 31(5), 466–467 (2010). https://doi.org/10.1007/s11669-010-9749-x

    Article  CAS  Google Scholar 

  35. N. Sasaguri, R. Takao, K. Yamamoto, Y. Yokomizo, Y. Matsubara, Effects of Mo, V and Nb addition on behavior of continuous cooling transformation of 16% chromium cast iron. Mater. Trans. 61(1), 169–175 (2020). https://doi.org/10.2320/matertrans.F-M2019854

    Article  CAS  Google Scholar 

  36. T. Yu, C. Liu, D. Wu, S. Wei, S. Lu, Microstructure and mechanical properties evolutions of 9Cr heat resistant steel deposited metals with different Si contents during 550 °C aging process. J. Market. Res. 26, 2122–2139 (2023). https://doi.org/10.1016/j.jmrt.2023.08.042

    Article  CAS  Google Scholar 

  37. J. Huang, J. Wang, L. Yang, W. Du, M. Wu, Q. Zhang, Z. Song, Comparative study on microstructure and mechanical properties of a novel nano-composite strengthening heat-resistant steel and two typical heat-resistant steels. Mater. Today Commun. 36, 106679 (2023). https://doi.org/10.1016/j.mtcomm.2023.106679

    Article  CAS  Google Scholar 

  38. Y. Wang et al., Effect of high temperature deformation on the microstructure, mechanical properties and hydrogen embrittlement of 2.25Cr–1Mo-0.25 V steel. Int. J. Hydrogen Energy 42(38), 24549–24559 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.237

    Article  CAS  Google Scholar 

  39. G. Yang, J.K. Kim, Hierarchical precipitates, sequential deformation-induced phase transformation, and enhanced back stress strengthening of the micro-alloyed high entropy alloy. Acta Mater. 233, 117974 (2022). https://doi.org/10.1016/j.actamat.2022.117974

    Article  CAS  Google Scholar 

  40. R.C. Gifkins, Grain-boundary participation in high-temperature deformation: an historical review. Mater Charact 32(2), 59–77 (1994). https://doi.org/10.1016/1044-5803(94)90093-0

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Key R&D Projects in Heilongjiang Province (GZ20220031), Reserve leader of the Leading Talent Team in Heilongjiang Province.

Funding

The funding was provided by Key R&D Projects in Heilongjiang Province, GZ20220031, Yicheng Feng

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yicheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, Y., Wenyong, J., Yicheng, F. et al. Effect of Nb/V Alloying on the Microstructure and Mechanical Properties of SiMo Ductile Iron. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01285-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01285-w

Keywords

Navigation