Skip to main content
Log in

The Mechanical Properties of Ductile Iron at Intermediate Temperatures: The Effect of Silicon Content and Pearlite Fraction

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The use of ductile irons in thermo-mechanically loaded components is increasing, necessitating more knowledge of material properties at intermediate temperatures. A study of the mechanical properties of ductile irons at intermediate temperatures was conducted, investigating the effect of different pearlite fractions along with silicon content tests in fully ferritic microstructures. The effect of the pearlite fraction and silicon content on tensile and yield strength was measured at different temperatures, from room temperature to 450 °C. Models of tensile and yield strengths were developed based on those measurements. These resulting regression models were tested with data from the literature. Such models can be applied in various design tools, such as FEM calculations and in the optimisation of thermally and cyclic loaded ductile iron components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. N. Fatahalla, Metallurgical parameters, mechanical properties and machinability of ductile cast iron. J. Mater. Sci. (UK) 31(21), 5765–5772 (1996)

    Article  CAS  Google Scholar 

  2. M. Liam, V. Ray, O. Jason, W. Zhen, Census of world casting production: worldwide casting production growth slowed but still reported a 2.6% increase in 2018. Mod. Cast. 109(12), 26–28 (2019)

    Google Scholar 

  3. P. Ferro, Fatigue properties of ductile cast iron containing chunky graphite. Mater. Sci. Eng. A 554, 122–128 (2012). https://doi.org/10.1016/j.msea.2012.06.024

    Article  CAS  Google Scholar 

  4. E. Foglio, Fatigue design of heavy section ductile irons: influence of chunky graphite. Mater. Des. 111, 353–361 (2016). https://doi.org/10.1016/j.matdes.2016.09.002

    Article  CAS  Google Scholar 

  5. A. Mourujärvi, Influence of chunky graphite on mechanical and fatigue properties of heavy-section cast iron. Fatigue Fract. Eng. Mater. Struct. 32(5), 379–390 (2009). https://doi.org/10.1111/j.1460-2695.2009.01337.x

    Article  CAS  Google Scholar 

  6. G. Ruff, Relationship between mechanical properties and graphite structure in cast irons. II—ductile iron. Mod. Cast. 70(7), 70–74 (1980)

    CAS  Google Scholar 

  7. H.K.D.H. Bhadeshia, Cementite. Int. Mater. Rev. (2019). https://doi.org/10.1080/09506608.2018.1560984

    Article  Google Scholar 

  8. S. Ghodrat, Volume expansion of compacted graphite iron induced by pearlite decomposition and the effect of oxidation at elevated temperature. Oxid. Met. 80(1), 161–176 (2013)

    Article  CAS  Google Scholar 

  9. ASM Handbook. 9th edition ed. Ohio, USA: American Society for Metals; 1978; Properties and Selection: Irons and Steels

  10. A. Alhussein, Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron. Mater. Sci. Eng. A 605, 222–228 (2014). https://doi.org/10.1016/j.msea.2014.03.057

    Article  CAS  Google Scholar 

  11. T. Burns, The Foseco Foundryman’s Handbook, 9th edition; 1986

  12. R. Larker, Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators—solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators. China Found. 6(4), 343–351 (2009)

    CAS  Google Scholar 

  13. R. González-Martínez, Effects of high silicon contents on graphite morphology and room temperature mechanical properties of as-cast ferritic ductile cast irons. Part I—microstructure. Mater. Sci. Eng. A. 712, 794–802 (2018). https://doi.org/10.1016/j.msea.2017.11.050

    Article  CAS  Google Scholar 

  14. T. Ikeda, Influence of silicon content, strain rate and temperature on toughness and strength of solid solution strengthened ferritic ductile cast iron. Mater. Trans. 57(12), 2132–2138 (2016). https://doi.org/10.2320/matertrans.F-M2016832

    Article  CAS  Google Scholar 

  15. F. Unkic, Vpliv silicija in bora na natezne lastnosti duktilne litine/the influence of silicon and boron on tensile properties of ductile iron. Livarski Vestnik. 59(2), 68–79 (2012)

    Google Scholar 

  16. Z. Wang, Effect of shrinkage porosity on mechanical properties of ferritic ductile iron. China Found. 10(3), 141–147 (2013)

    Google Scholar 

  17. P. Weiß, Mechanistic approach to new design concepts for high silicon ductile iron. Mater. Sci. Eng. A 713, 67–74 (2018). https://doi.org/10.1016/j.msea.2017.12.012

    Article  CAS  Google Scholar 

  18. S. Biswas, Use of published experimental results to validate approaches to gray and ductile iron mechanical properties prediction. Int. J. Metalcast. 11(4), 656–674 (2017). https://doi.org/10.1007/s40962-016-0126-3

    Article  Google Scholar 

  19. M. Riebisch, Impact of carbide-promoting elements on the mechanical properties of solid-solution-strengthened ductile iron. Int. J. Metalcast. (2019). https://doi.org/10.1007/s40962-019-00358-5

    Article  Google Scholar 

  20. J. Roučka, Properties of type SiMo ductile irons at high temperatures. Arch. Metall. Mater. 63(2), 601–607 (2018). https://doi.org/10.24425/122383

    Article  CAS  Google Scholar 

  21. M. Ekström, High-temperature mechanical- and fatigue properties of cast alloys intended for use in exhaust manifolds. Mat. Sci. Eng. A 616, 78–87 (2014). https://doi.org/10.1016/j.msea.2014.08.014

    Article  CAS  Google Scholar 

  22. K. Jalava, Effect of silicon and microstructure on spheroidal graphite cast iron thermal conductivity at elevated temperatures. Int. J. Metalcasting 12(3), 480–486 (2018). https://doi.org/10.1007/s40962-017-0184-1

    Article  CAS  Google Scholar 

  23. F. Szmytka, Thermo-mechanical fatigue resistance characterization and materials ranking from heat-flux-controlled tests. Application to cast-irons for automotive exhaust part. Int. J. Fatigue. 55, 136–146 (2013). https://doi.org/10.1016/j.ijfatigue.2013.06.012

    Article  CAS  Google Scholar 

  24. H. Mouri, Effect of dynamic strain aging on isothermal (473 K) low cycle fatigue of ferritic ductile cast iron. Mater. Trans. 50(8), 1935 (2009)

    Article  CAS  Google Scholar 

  25. D. Caillard, An in situ study of hardening and softening of iron by carbon interstitials. Acta Mater. 59(12), 4974–4989 (2011). https://doi.org/10.1016/j.actamat.2011.04.048

    Article  CAS  Google Scholar 

  26. K. Jalava, J. Laine, J. Vaara, T. Frondelius, J. Orkas, Investigation on dynamic strain aging behavior of ferritic–pearlitic ductile irons. Mater. Sci. Technol. (2019). https://doi.org/10.1080/02670836.2019.1685760

    Article  Google Scholar 

  27. B. Jost, Temperature dependent cyclic deformation and fatigue life of EN-GJS-600 (ASTM 80-55-06) ductile cast iron. Int. J. Fatigue. 96, 102–113 (2017). https://doi.org/10.1016/j.ijfatigue.2016.11.010

    Article  CAS  Google Scholar 

  28. C. Thomser, Optimized durability prediction of cast iron based on local microstructure. Int. J. Metalcast. 11(2), 207–215 (2017). https://doi.org/10.1007/s40962-016-0091-x

    Article  Google Scholar 

  29. I. Svensson, T. Sjögren, On modeling and simulation of mechanical properties of cast irons with different morphologies of graphite. Int. J. Metalcast. 3, 67–77 (2009). https://doi.org/10.1007/BF03355460

  30. M. Hafiz, Mechanical properties of SG-iron with different matrix structure. J. Mater. Sci. 36(5), 1293–1300 (2001)

    Article  CAS  Google Scholar 

  31. P. Canzar, Microstructure influence on fatigue behaviour of nodular cast iron. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 556(1), 88–99 (2012). https://doi.org/10.1016/j.msea.2012.06.062

    Article  CAS  Google Scholar 

  32. S. Kubota, Effect of microstructure on mechanical properties and machinability of spheroidal graphite cast iron. Chuzo Kogaku (J. Jpn Found. Eng.) 85(8), 489–496 (2013). https://doi.org/10.11279/jfes.85.489

    Article  CAS  Google Scholar 

  33. J. Toribio, Influence of microstructure on strength and ductility in fully pearlitic steels. Metals 6(12), 318 (2016). https://doi.org/10.3390/met6120318

    Article  Google Scholar 

  34. L. Dix, Static mechanical properties of ferritic and pearlitic lightweight ductile iron castings. Trans. Am. Found. Soc. 111, 895–910 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Laine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40962_2020_473_MOESM1_ESM.xlsx

Appendix 1: Mechanical values of different pearlite fractions and calculated values. Appendix 2: Mechanical values of different silicon contents (0% pearlite) and calculated values (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laine, J., Jalava, K., Vaara, J. et al. The Mechanical Properties of Ductile Iron at Intermediate Temperatures: The Effect of Silicon Content and Pearlite Fraction. Inter Metalcast 15, 538–547 (2021). https://doi.org/10.1007/s40962-020-00473-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00473-8

Keywords

Navigation