Skip to main content
Log in

Semi-solid Tensile Behavior and its Relationship with Hot Tearing Susceptibility of Mg–xCa Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

To figure out the relationship between semi-solid deformation and hot tearing susceptibility of magnesium alloys, the solid and semi-solid tensile experiments of binary Mg–xCa (x = 0.2, 0.5, and 2 wt%) alloys were conducted by a Gleeble 3500 thermal simulator. The linear contraction of the alloys was measured by a newly developed apparatus based on a constrained rod casting (CRC) hot tearing apparatus. The results indicated that the ultimate tensile strength (UTS) and fracture elongation (FE) of the alloys decreased with the decrease in solid fraction (increase in the test temperature). It is revealed that Mg–0.5Ca alloy exhibited the highest hot tearing susceptibility due to its extremely low ductility even at a high solid fraction of 0.96 and the highest linear contraction among the three alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. J. Song, J. Chen, X. Xiong et al., Research advances of magnesium and magnesium alloys worldwide in 2021. J. Magnes. Alloys (2022). https://doi.org/10.1016/j.jma.2022.04.001

    Article  Google Scholar 

  2. G. Li, W. Jiang, F. Guan et al., Microstructure, mechanical properties and corrosion resistance of A356 aluminum/AZ91D magnesium bimetal prepared by a compound casting combined with a novel Ni–Cu composite interlayer. J. Mater. Process. Technol. (2021). https://doi.org/10.1016/j.jmatprotec.2020.116874

    Article  Google Scholar 

  3. W. Xu, N. Birbilis, G. Sha et al., A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. (2015). https://doi.org/10.1038/nmat4435

    Article  PubMed  PubMed Central  Google Scholar 

  4. V. Bazhenov, A. Koltygin, M. Sung et al., Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2020.11.020

    Article  Google Scholar 

  5. J. Wang, R. Wu, J. Feng et al., Recent advances of electromagnetic interference shielding Mg matrix materials and their processings: a review. Trans. Nonferrous Met. Soc. China (2022). https://doi.org/10.1016/s1003-6326(22)65881-3

    Article  Google Scholar 

  6. J. Liao, J. Song, G. Chen et al., Effect of minor ag and ce additions on hot tearing susceptibility of Mg–10Gd–3Y–0.5Zr alloy. Int. J. Met. (2023). https://doi.org/10.1007/s40962-022-00939-x

    Article  Google Scholar 

  7. Z. Yang, K. Wang, P. Fu et al., Influence of alloying elements on hot tearing susceptibility of Mg–Zn alloys based on thermodynamic calculation and experimental. J. Magnes. Alloys (2018). https://doi.org/10.1016/j.jma.2018.01.001

    Article  Google Scholar 

  8. A. Nabawy, A. Samuel, F. Samuel et al., A review on the criteria of hot tearing susceptibility of aluminum cast alloys. Int. J. Met. (2021). https://doi.org/10.1007/s40962-020-00559-3

    Article  Google Scholar 

  9. D. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. (2004). https://doi.org/10.1016/s0079-6425(03)00037-9

    Article  Google Scholar 

  10. J. Song, H. Zhao, J. Liao et al., Comparison on hot tearing behavior of binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca alloys. Metall. Mater. Trans. A (2022). https://doi.org/10.1007/s11661-022-06719-w

    Article  Google Scholar 

  11. H. Zhao, J. Song, B. Jiang et al., The effect of sr addition on hot tearing susceptibility of Mg–1Ca–xSr alloys. J. Mater. Eng. Perform. (2021). https://doi.org/10.1007/s11665-021-05925-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. X. Du, F. Wang, Z. Wang et al., Effect of Ca/Al ratio on hot tearing susceptibility of Mg–Al–Ca alloy. J. Alloy. Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165113

    Article  Google Scholar 

  13. G. Zhang, Y. Wang, Z. Liu et al., Influence of Al addition on solidification path and hot tearing susceptibility of Mg–2Zn–(3+0.5x)Y–xAl alloys. J. Magnes. Alloy. (2019). https://doi.org/10.1016/j.jma.2019.04.001

    Article  Google Scholar 

  14. G. Vinodh, H. Nodooshan, D. Li et al., Effect of Al content on hot-tearing susceptibility of Mg–10Zn–xAl alloys. Metall. Mater. Trans. A (2020). https://doi.org/10.1007/s11661-020-05657-9

    Article  Google Scholar 

  15. B. Hu, D. Li, Z. Li et al., Step-by-step observation of secondary-phase evolution during the casting cracking process in Mg–Ce–Al alloys. Metall. Mater. Trans. A (2022). https://doi.org/10.1007/s11661-022-06766-3

    Article  Google Scholar 

  16. Y. Zhou, P.L. Mao, L. Zhou et al., Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg–1Zn–xY alloys. J. Magnes. Alloys (2020). https://doi.org/10.1016/j.jma.2020.03.005

    Article  Google Scholar 

  17. Z. Wei, S. Liu, Z. Liu et al., Effects of Zn content on hot tearing susceptibility of Mg–Zn–Gd–Y–Zr alloys. Int. J. Met. (2022). https://doi.org/10.1007/s40962-021-00720-6

    Article  Google Scholar 

  18. X. Du, F. Wang, Z. Wang et al., Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field. Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01033-z

    Article  Google Scholar 

  19. Y. Zhou, P. Mao, Z. Wang et al., Experimental investigation and simulation assessment on fluidity and hot tearing of Mg–Zn–Cu system alloys. J. Mater. Process. Technol. (2021). https://doi.org/10.1016/j.jmatprotec.2021.117259

    Article  Google Scholar 

  20. X. Su, Z. Feng, Y. Li et al., Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy. Int. J. Met. (2021). https://doi.org/10.1007/s40962-020-00493-4

    Article  Google Scholar 

  21. S. Liu, Z. Wei, Z. Liu et al., Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg–Zn–xY-2–Zr-00.6 alloys with different initial mold temperatures. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.163963

    Article  Google Scholar 

  22. H. Huang, P. Fu, Y. Wang et al., Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Trans. Nonferrous Met. Soc. China (2014). https://doi.org/10.1016/s1003-6326(14)63144-7

    Article  Google Scholar 

  23. Y. Li, H. Li, L. Katgerman et al., Recent advances in hot tearing during casting of aluminium alloys. Prog. Mater. Sci. (2021). https://doi.org/10.1016/j.pmatsci.2020.100741

    Article  Google Scholar 

  24. J. Rakhmonov, M. Qassem, D. Larouche et al., A new approach to determine tensile stress–strain evolution in semi-solid state at near-solidus temperature of aluminum alloys. Metals (2021). https://doi.org/10.3390/met11030396

    Article  Google Scholar 

  25. J. Zhu, J. Guo, M. Samonds, Numerical modeling of hot tearing formation in metal casting and its validations. Int. J. Numer. Methods Eng. (2011). https://doi.org/10.1002/nme.3054

    Article  Google Scholar 

  26. A. Phillion, S. Vernede, M. Rappaz et al., Prediction of solidification behaviour via microstructure models based on granular structures. Int. J. Cast Met. Res. (2009). https://doi.org/10.1179/136404609x367849

    Article  Google Scholar 

  27. D. Fabregue, A. Deschamps, M. Suery et al., Non-isothermal tensile tests during solidification of Al–Mg–Si–Cu alloys: mechanical properties in relation to the phenomenon of hot tearing. Acta Mater. (2006). https://doi.org/10.1016/j.actamat.2006.06.027

    Article  Google Scholar 

  28. T. Subroto, D. Eskin, A. Miroux et al., Semi-solid constitutive parameters and failure behavior of a cast AA7050 alloy. Metall. Mater. Trans. A (2021). https://doi.org/10.1007/s11661-020-06112-5

    Article  Google Scholar 

  29. R. Xu, X. Tian, Tensile properties of the semi-solid state in solidifying aluminum alloys. Russ. J. Non-Ferrous Metals (2014). https://doi.org/10.3103/s1067821214050149

    Article  Google Scholar 

  30. K. Hu, A. Phillion, D. Maijer et al., Constitutive behavior of as-cast magnesium alloy Mg–Al3–Zn1 in the semi-solid state. Scr. Mater. (2009). https://doi.org/10.1016/j.scriptamat.2008.11.011

    Article  Google Scholar 

  31. Q. Bai, Y. Li, H. Li et al., Roles of alloy composition and grain refinement on hot tearing susceptibility of 7xxx aluminum alloys. Metall. Mater. Trans. A (2016). https://doi.org/10.1007/s11661-016-3588-2

    Article  Google Scholar 

  32. D. Eskin, L. Katgerman, J. Mooney et al., Contraction of aluminum alloys during and after solidification. Metall. Mater. Trans. A (2004). https://doi.org/10.1007/s11661-004-0307-1

    Article  Google Scholar 

  33. Y. Li, Q. Bai, J. Liu et al., The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of AA7050 alloy inoculated with Al–5Ti–1B master alloy. Metall. Mater. Trans. A (2016). https://doi.org/10.1007/s11661-016-3543-2

    Article  Google Scholar 

  34. M. Lalpoor, D. Eskin, L. Katgerman, Thermal expansion/contraction behavior of AA7050 alloy in the as-cast condition relevant to thermomechanical simulation of residual thermal stresses. Int. J. Mater. Res. (2011). https://doi.org/10.3139/146.110579

    Article  Google Scholar 

  35. C. Puncreobutr, P. Lee, R. Hamilton et al., Synchrotron tomographic characterization of damage evolution during aluminum alloy solidification. Metall. Mater. Trans. A (2013). https://doi.org/10.1007/s11661-012-1563-0

    Article  Google Scholar 

  36. L. Li, W. Liu, F. Qi et al., Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—a review. J. Magnes. Alloys (2022). https://doi.org/10.1016/j.jma.2022.09.003

    Article  Google Scholar 

  37. J. Tian, J. Deng, Y. Chang et al., A study of unstable fracture of a magnesium alloy caused by uneven microstructure. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2022.131799

    Article  Google Scholar 

  38. Y. Du, X. Qiao, M. Zheng et al., The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. (2015). https://doi.org/10.1016/j.msea.2014.10.028

    Article  Google Scholar 

  39. Z. Wang, J. Song, Y. Huang et al., An investigation on hot tearing of Mg–4.5 Zn–(0.5 Zr) alloys with Y additions. Metall. Mater. Trans. A (2015). https://doi.org/10.1007/s11661-015-2755-1

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2021YFB3701000, 2022YFB3709300), National Natural Science Foundation of China (No. U2037601, 52071036), State Key Laboratory of Mechanical Transmission, Chongqing University (No. SKLMT-ZZKT-2022Z01, SKLMT-ZZKT2022M12), and Graduate Scientific Research and Innovation Foundation of Chongqing (No. CYS22009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Song, J., Wang, J. et al. Semi-solid Tensile Behavior and its Relationship with Hot Tearing Susceptibility of Mg–xCa Alloys. Inter Metalcast 18, 1119–1134 (2024). https://doi.org/10.1007/s40962-023-01097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01097-4

Keywords

Navigation