Skip to main content
Log in

Initial Oxidation Stage of SiMo and SiNb-xAl Ductile Cast Irons in Air and CO2-Containing Atmospheres

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, novel SiNb-xAl (x:0–4 wt.%) ductile cast irons were developed to be used as exhaust manifold material. Initial oxidation stages of these alloys were studied at 800 °C in air and in a gas atmosphere (9 % CO2, 4 % O2 and 87 % N2) and compared with a commercial SiMo ductile iron. It was found that the newly developed ductile cast irons had higher oxidation resistance compared to the SiMo ductile iron under the studied test conditions, and this resistance increased further, as aluminum content of the ductile cast iron increased. Both surfaces and cross sections of the oxidized cast irons were characterized by 3D profilometer, scanning electron microscope equipped with energy-dispersive spectrometer and X-ray diffraction technique. Dense Fe-rich nodules and an extremely thick bilayer scale were detected on the surface of the SiMo ductile iron in both test environments. However, the number of nodules on the surface and their distribution frequency were decreased in SiNb cast iron. Aluminum addition to SiNb cast iron caused a further reduction in the number of nodules and also a finer scale formation due to the presence of an Al-rich protective layer on the surface. All these findings are encouraging that new cast irons can be used as alternative materials to SiMo ductile iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. A.A. Partoaa, M. Abdolzadeh, M. Rezaeizadeh, Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine. J. Cent. South. Univ. 24, 546–559 (2017). https://doi.org/10.1007/s11771-017-3457-1

    Article  Google Scholar 

  2. T. Johnson, A., Joshi, review of vehicle engine efficiency and emissions. SAE Int. J. Eng. 11(6), 1307–1330 (2018)

    Article  Google Scholar 

  3. M. Ekström, S. Jonsson, High-temperature mechanical-and fatigue properties of cast alloys intended for use in exhaust manifolds. Mater. Sci. Eng. A 616, 78–87 (2014). https://doi.org/10.1016/j.msea.2014.08.014

    Article  CAS  Google Scholar 

  4. L.M. Åberg, C. Hartung, Solidification of SiMo nodular cast iron for high temperature applications. Trans. of Indian Inst. Met. 65, 633–636 (2012). https://doi.org/10.1007/s12666-012-0216-8

    Article  CAS  Google Scholar 

  5. J.P. Shingledecker, P.J. Maziasz, N.D. Evans, M.J. Pollard, Creep behavior of a new cast austenitic alloy. Int. J. Press. Vessels Pip. 84, 21–28 (2007). https://doi.org/10.1016/j.ijpvp.2006.09.014

    Article  CAS  Google Scholar 

  6. H. Kazdal Zeytin, C. Kubilay, H. Aydın, A.A. Ebrinc, B. Aydemir, Effect of microstructur on exhaust manifold cracks produced from SiMo ductile iron. J. Iron. Steel Res. Int. 16, 32–36 (2009). https://doi.org/10.1016/S1006-706X(09)60040-6

    Article  Google Scholar 

  7. P.J. Maziasz, Development of creep-resistant and oxidation-resistant austenitic stainless steels for high temperature applications. JOM 70, 66–75 (2018). https://doi.org/10.1007/s11837-017-2642-x

    Article  CAS  Google Scholar 

  8. F. Tholence, M. Norell, High temperature corrosion of cast alloys in exhaust environments. II - cast stainless steels. Oxid. Met. 69, 37–62 (2008). https://doi.org/10.1007/s11085-007-9082-x

    Article  CAS  Google Scholar 

  9. M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, R.D. England, Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor. Oxid. Met. 82, 359–381 (2014). https://doi.org/10.1007/s11085-014-9496-1

    Article  CAS  Google Scholar 

  10. Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, Q. Feng, Effective design of new austenitic cast steels for ultra-high temperature automotive exhaust components through combined CALPHAD and experimental approaches. Metall. and Mater. Trans. A 47, 3289–3294 (2016). https://doi.org/10.1016/j.msea.2016.12.023

    Article  CAS  Google Scholar 

  11. R. Osei, S. Lekakh, R. O’Malley, Effect of Al Additions on scale structure and oxidation kinetics of 430-ferritic stainless steel reheated in a combustion atmosphere. Metall. and Mater. Trans. B 52, 3423–3438 (2021). https://doi.org/10.1007/s11663-021-02272-w

    Article  CAS  Google Scholar 

  12. P. Matteis, G. Scavino, A. Castello, D. Firrao, High temperature fatigue properties of a Si-Mo ductile cast iron. Procedia Mater. Sci. 3, 2154–2159 (2014). https://doi.org/10.1016/j.mspro.2014.06.349

    Article  CAS  Google Scholar 

  13. P. Matteis, G. Scavino, A. Castello, D. Firrao, High-cycle fatigue resistance of Si-Mo ductile cast iron as affected by temperature and strain rate. Metall. and Mater. Trans. A 46, 4086–4094 (2015). https://doi.org/10.1007/s11661-015-3029-7

    Article  CAS  Google Scholar 

  14. G.A. Çelik, M.I.T. Tzini, Ş Polat, J.S. Aristeidakis, ŞH. Atapek, P.I. Sarafolou, G.N. Haidemenopoulos, Simulation and analysis of the solidification characteristics of a Si-Mo ductile iron. J. Min. Metall. Sect. B. 57, 53–62 (2021). https://doi.org/10.2298/JMMB200717003C

    Article  Google Scholar 

  15. Y. Li, J. Liu, W. Huang et al., Failure analysis of a diesel engine exhaust manifold. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00796-8

    Article  Google Scholar 

  16. Ekström M. Oxidation and corrosion fatigue aspects of cast exhaust manifolds Ph.D. thesis KTH Royal Institute of Technology; 2015.

  17. D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan et al., High temperature materials for heavy duty diesel engines: historical and future trends. Prog Mater Sci 103, 109–179 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.004

    Article  CAS  Google Scholar 

  18. F. Tholence, M. Norell, Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases. J. Phys. Chem. Solids 66, 530–534 (2005). https://doi.org/10.1016/j.jpcs.2004.05.010

    Article  CAS  Google Scholar 

  19. F. Tholence, M. Norell, High temperature corrosion of cast alloys in exhaust environments. I – ductile cast irons. Oxid. Met. 69, 13–36 (2008). https://doi.org/10.1007/s11085-007-9081-y

    Article  CAS  Google Scholar 

  20. M.M. Ibrahim, A. Nofal, M.M. Mourad, Microstructure and hot oxidation resistance of SiMo ductile cast irons containing Si-Mo-Al. Metall. and Mater. Trans. B 48, 1149–1157 (2017). https://doi.org/10.1007/s11663-016-0871-y

    Article  CAS  Google Scholar 

  21. M. Stawarz, P.M. Nuckowski, Effect of Mo addition on the chemical corrosion process of SiMo cast iron. Materials 13, 1745 (2020). https://doi.org/10.3390/ma13071745

    Article  CAS  Google Scholar 

  22. M. Stawarz, SiMo ductile iron crystallization process. Arch. Foundry Eng. 17, 147–152 (2017). https://doi.org/10.1515/afe-2017-0027

    Article  CAS  Google Scholar 

  23. M. Ekström, P. Szakalos, S. Jonsson, Influence of Cr and Ni on high-temperature corrosion behavior of ferritic ductile cast iron in air and exhaust gases. Oxid. Met. 80, 455–466 (2013). https://doi.org/10.1007/s11085-013-9389-8

    Article  CAS  Google Scholar 

  24. S.N. Lekakh, A. Bofah, W.-T. Chen, L. Godlewski, M. Li, Prevention of high-temperature surface degradation in SiMo Cast Irons by Cr and Al alloying. Metall Mater Trans B 51, 2542–2554 (2020). https://doi.org/10.1007/s11663-020-01975-w

    Article  CAS  Google Scholar 

  25. C. Delprete, R. Sesana, Experimental characterization of a Si–Mo–Cr ductile cast iron. Mater. Des. 57, 528–537 (2014). https://doi.org/10.1016/j.matdes.2014.01.002

    Article  CAS  Google Scholar 

  26. M.M. Ibrahim, M.M. Mourad, A.A. Nofal, A.I.Z. Farahat, Microstructure, hot oxidation resistance and damping capacity of Al- alloyed cast iron. Int. J. Cast Met. Res. 30, 61–69 (2017). https://doi.org/10.1080/13640461.2016.1239895

    Article  CAS  Google Scholar 

  27. S. Chandra-ambhorn, T. Tummaporn, P. Jiradech, High temperature oxidation of Al-alloyed SiMo cast iron in CO2-containing atmospheres. Adv. Mater. Res. 813, 132–135 (2013). https://doi.org/10.4028/www.scientific.net/amr.813.132

    Article  CAS  Google Scholar 

  28. S. Xiang, B. Zhu, S. Jonsson, High-temperature corrosion-fatigue behavior of ductile cast irons for exhaust manifolds applications. Mater. Sci. Forum 925, 369–376 (2018). https://doi.org/10.4028/www.scientific.net/MSF.925.369

    Article  Google Scholar 

  29. N. Scheidhauer, C. Doööaschk, G. Wolf, Oxidation resistant cast iron for high temperature application. Mater. Sci. Forum 925, 393–399 (2018). https://doi.org/10.4028/www.scientific.net/MSF.925.393

    Article  Google Scholar 

  30. H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels Microstructure and Properties, 3rd edn. (Elsevier Ltd., Oxford, UK, 2006)

    Google Scholar 

  31. S.N. Lekakh, C. Johnson, L. Godlewski et al., Control of high-temperature static and transient thermomechanical behavior of SiMo Ductile Iron by Al alloying. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00768-y

    Article  Google Scholar 

  32. G. Aktaş Çelik, M-I. T. Tzini, Ş. H. Atapek, Ş. Polat, G. N. Haidemenopoulos, Computation of the effect of alloying elements on the physical properties of SiMo ductile cast iron. in Proc. IMMC19, (2018) 1086-1089.

  33. G. Aktaş Çelik, Egzoz manifoldu olarak kullanılan sünek dökme demirlerin alaşımlama ile geliştirilmesi, PhD Thesis, 2020, Kocaeli, Turkey.

  34. G. Aktaş Çelik, M.-I.T. Tzini, ŞH. Atapek, Ş Polat, G.N. Haidemenopoulos, Matrix design of a novel ductile cast iron modified by W and Al: a comparison between thermodynamic modeling and experimental data. Metall. Mater. Eng. 26, 15–29 (2020). https://doi.org/10.30544/449

    Article  Google Scholar 

  35. G. Aktaş Çelik, M.-I.T. Tzini, ŞH. Atapek, Ş Polat, G.N. Haidemenopoulos, Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition. Int. J. Miner. Metall. Mater. 27, 190–199 (2020). https://doi.org/10.1007/s12613-019-1876-8

    Article  CAS  Google Scholar 

  36. G. Aktaş Çelik, Ş.H. Atapek, Ş. Polat, M-I.T. Tzini, G. N. Haidemenopoulos, Hot oxidation resistance of a novel cast iron modified by Nb and Al addition for exhaust manifold applications. Metall. and Mater. Trans. A, (2022), in press.

  37. A. Ebel, O. Marsan, J. Lacaze, B. Malard, Cyclic oxidation of high- silicon spheroidal graphiteiron. Corros. Sci. 192, 109854 (2021). https://doi.org/10.1016/j.corsci.2021.109854

    Article  CAS  Google Scholar 

  38. A. Ebel, S.Y. Brou, B. Malard, J. Lacaze, D. Monceau, L. Vaissière, High-temperature oxidation of a high silicon SiMo spheroidal cast iron in air with in situ change in H2O content. Mater. Sci. Forum 925, 353–360 (2018). https://doi.org/10.4028/www.scientific.net/msf.925.353

    Article  Google Scholar 

  39. S.N. Lekakh, C. Johnson, A. Bofah et al., Improving high-temperature performance of high Si-alloyed ductile iron by altering additions. Inter Metalcast 15, 874–888 (2021). https://doi.org/10.1007/s40962-020-00524-0

    Article  CAS  Google Scholar 

  40. K. Dawi, J. Favergeon, G. Moulin, High temperature corrosion of the Si-Mo cast iron in exhaust atmosphere. Mater. Sci. Forum 595–598, 743–751 (2008). https://doi.org/10.4028/www.scientific.net/MSF.595-598.743

    Article  Google Scholar 

  41. ASM Handbook, Vol. 1, Properties and Selection: Irons, Steels, and High Performance Alloys, 4th ed., ASM International, Ohio, pp. 17-210, (1995).

  42. G. Alonso, D.M. Stefanescu, J. Sanchez et al., Effect of the type of inoculant on the shrinkage porosity of high-silicon SG Iron. Inter Metalcast 16, 106–118 (2022). https://doi.org/10.1007/s40962-021-00605-8

    Article  CAS  Google Scholar 

  43. J. Lacaze, Trace elements and graphite shape degeneracy in nodular graphite cast irons. Inter Metalcast 11, 44–51 (2017). https://doi.org/10.1007/s40962-016-0115-6

    Article  Google Scholar 

  44. G. Alonso, P. Larrañaga, D.M. Stefanescu et al., Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. Inter Metalcast 11, 14–26 (2017). https://doi.org/10.1007/s40962-016-0094-7

    Article  Google Scholar 

  45. J.M. Tartaglia, R.B. Gundlach, G.M. Goodrich, Optimizing structure-property relationships in ductile iron. Inter Metalcast 8, 7–38 (2014). https://doi.org/10.1007/BF03355592

    Article  Google Scholar 

  46. K. Jalava, K. Soivio, J. Laine et al., Effect of silicon and microstructure on spheroidal graphite cast iron thermal conductivity at elevated temperatures. Inter Metalcast 12, 480–486 (2018). https://doi.org/10.1007/s40962-017-0184-1

    Article  CAS  Google Scholar 

  47. S.N. Lekakh, Communication: characterization of spatial distribution of graphite nodules in cast iron. Inter Metalcast 11, 743–748 (2017). https://doi.org/10.1007/s40962-016-0128-1

    Article  Google Scholar 

  48. D. Franzen, B. Pustal, A. Bührig-Polaczek, Influence of Graphite-Phase Parameters on the Mechanical Properties of High-Silicon Ductile Iron. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00761-5

    Article  Google Scholar 

  49. J. Laine, K. Jalava, J. Vaara et al., The mechanical properties of ductile iron at intermediate temperatures: the effect of silicon content and pearlite fraction. Inter Metalcast 15, 538–547 (2021). https://doi.org/10.1007/s40962-020-00473-8

    Article  CAS  Google Scholar 

  50. J. Laine, A. Leppänen, K. Jalava et al., Ductile iron optimization approach for mechanically and thermally loaded components. Inter Metalcast 15, 962–968 (2021). https://doi.org/10.1007/s40962-020-00529-9

    Article  CAS  Google Scholar 

  51. C. Hartung, R. Logan, A. Plowman et al., Research on solution strengthened ferritic ductile Iron (SSFDI) structure and properties using different treatment and inoculation materials. Inter Metalcast 14, 1195–1209 (2020). https://doi.org/10.1007/s40962-020-00469-4

    Article  CAS  Google Scholar 

  52. I. Pereira, G. Alonso, V. Anjos et al., The influence of alloying elements on damping capacity of nodular cast irons for braking system components. Inter Metalcast 14, 802–808 (2020). https://doi.org/10.1007/s40962-020-00426-1

    Article  CAS  Google Scholar 

  53. D. Franzen, B. Pustal, A. Bührig-Polaczek, Mechanical properties and impact toughness of molybdenum alloyed ductile iron. Inter Metalcast 15, 983–994 (2021). https://doi.org/10.1007/s40962-020-00533-z

    Article  CAS  Google Scholar 

  54. Y.S. Jang, M. Phaniraj, D.I. Kim et al., Effect of aluminum content on the microstructure and mechanical properties of hypereutectoid steels. Metall Mater Trans A 41, 2078–2084 (2010). https://doi.org/10.1007/s11661-010-0233-3

    Article  CAS  Google Scholar 

  55. A. Shayesteh-Zeraati, H. Naser-Zoshki, A.R. Kiani-Rashid, Microstructural and mechanical properties (hardness) investigations of Al-alloyed ductile cast iron. J. Alloys Compd. 500, 129–133 (2010). https://doi.org/10.1016/j.jallcom.2010.04.003

    Article  CAS  Google Scholar 

  56. A.R. Kiani-Rashid, Influence of austenitising conditions and aluminium content on microstructure and properties of ductile irons. J. Alloys Compd. 470, 323–327 (2009). https://doi.org/10.1016/j.jallcom.2008.02.070

    Article  CAS  Google Scholar 

  57. N. Haghdadi, B. Bazaz, H.R. Erfanian-Naziftoosi, A.R. Kiani-Rashid, Microstructural and mechanical characteristics of Al-alloyed ductile iron upon casting and annealing. Int. J. Miner. Metall. Mater. 19, 812–820 (2012). https://doi.org/10.1007/s12613-012-0633-z

    Article  CAS  Google Scholar 

  58. M.M. Khalvan, M. Divandari, Microstructure of spheroidal graphite aluminum-alloyed cast irons (SGAACI) containing up to 7.5 wt% produced via in-mold process. Inter Metalcast 15, 271–280 (2021)

    Article  CAS  Google Scholar 

  59. S.N. Lekakh, V.L. Richards, N. Medvedeva, Effect of Si segregation on low temperature toughness of ductile iron. AFS Trans. 120, 319–327 (2012)

    CAS  Google Scholar 

  60. A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Balloy, J. Favergeon, Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron. Mater. Sci. Eng. A 605, 222–228 (2014). https://doi.org/10.1016/j.msea.2014.03.057

    Article  CAS  Google Scholar 

  61. Q. Cai, Z. Chen, C. Xu et al., Effect of elemental segregation on the microstructure and mechanical properties of heavy section compacted graphite iron. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00758-0

    Article  Google Scholar 

  62. A. Bedolla-Jacuinde, E. Solis, B. Hernandez, Effect of niobium in medium alloyed ductile cast irons. Int. J. Cast Met. Res. 16, 481–486 (2003). https://doi.org/10.1080/13640461.2003.11819625

    Article  CAS  Google Scholar 

  63. J. Lacaze, B. Sundman, An assessment of Fe-C-Si system. Metall. Mater. Trans. A 22, 2211–2223 (1991). https://doi.org/10.1007/BF02664987

    Article  Google Scholar 

  64. L.L. Liu, Q.Q. Guo, Y. Niu, Transition between different oxidation modes of binary Fe–Si alloys at 600–800 °C in Pure O2. Oxid Met 79, 201–224 (2013). https://doi.org/10.1007/s11085-012-9318-2

    Article  CAS  Google Scholar 

  65. L.L. Liu, Q.Q.Y. guoNiu, Transition between different oxidation modes of binary Fe–Si Alloys at 600–800 °C in pure O2. Oxid. Met. 79, 201–224 (2013). https://doi.org/10.1007/s11085-012-9318-2

    Article  CAS  Google Scholar 

  66. P. Tomaszewicz, G.R. Wallwork, Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys. Oxid. Met. 19, 165–185 (1983). https://doi.org/10.1007/BF00666643

    Article  CAS  Google Scholar 

  67. R. Prescott, M.J. Graham, The oxidation of iron-aluminum alloys. Oxid. Met. 38, 73–87 (1992). https://doi.org/10.1007/BF00665045

    Article  CAS  Google Scholar 

  68. A.R. Kiani Rashid, D.V. Edmonds, Oxidation behaviour of Al-alloyed ductile cast irons at elevated temperature. Surf. Interface Anal. 36, 1011–1013 (2004). https://doi.org/10.1002/sia.1825

    Article  CAS  Google Scholar 

  69. M.A. Mendez, A. Arenas, R. Niklas, A. González, J.S. Conde, J.J.D. Damborenea, Effect of silicon and graphite degeneration on high-temperature oxidation of ductile cast irons in open air. Oxid. Met. 91, 225–242 (2019). https://doi.org/10.1007/s11085-018-9875-0

    Article  CAS  Google Scholar 

  70. M.M. Ibrahim, A. Nofal, M.M. Mourad, Microstructure and hot oxidation resistance of SiMo ductile cast irons containing Si-Mo-Al. Metall. and Mater. Trans. B. 48, 1149–1157 (2017). https://doi.org/10.1007/s11663-016-0871-y

    Article  CAS  Google Scholar 

  71. S.N. Lekakh, A. Bofah, L.A. Godlewski, M. Li, Effect of micro-structural dispersity of SiMo ductile iron on high temperature performance during static oxidation. Metals 12, 661 (2022). https://doi.org/10.3390/met12040661

    Article  CAS  Google Scholar 

  72. S. Chandra-Ambhorn, T. Tummaporn, P. Jiradech, High temperature oxidation of Al-alloyed SiMo cast iron in CO2-containing atmospheres. AMR 813, 132–135 (2013). https://doi.org/10.4028/www.scientific.net/amr.813.132

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors, G. Aktaş Çelik, Ş. Polat and Ş. H. Atapek, wish to acknowledge the financial support given by Scientific Research Projects Coordination Unit of Kocaeli University under the project numbers 2017/118 and 2019/118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ş. Hakan Atapek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktaş Çelik, G., Atapek, Ş.H. & Polat, Ş. Initial Oxidation Stage of SiMo and SiNb-xAl Ductile Cast Irons in Air and CO2-Containing Atmospheres. Inter Metalcast 17, 1763–1777 (2023). https://doi.org/10.1007/s40962-022-00883-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00883-w

Keywords

Navigation