Skip to main content

Advertisement

Log in

A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment

  • Review Paper
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Skin cancers especially non-melanoma skin cancer or nonmelanocytic skin cancer (NMSC) are the fastest-growing type of cancer in the Caucasian population. The costs of these diseases are high, and treatments are invasive or have adverse effects. Currently, smart biomaterials present an alternative for adequate treatment for better dose control, higher cell-specify and less side effects. Interpenetrating and semi-interpenetrating polymer networks, which include hydrogels, are smart materials composed of the entanglement of two or more polymers. These biomaterials possess with tuneable properties including elasticity, biocompatibility and biodegradation, and therefore are ideal materials for artificial scaffolds for tissue regeneration, and controlled drug delivery systems, both of which have important applications in skin cancer. The overall idea of this text is to present the factors that trigger the development and current treatment of NMSC. Also, it is discussed what biomaterials such as interpenetrating polymer networks are, their properties and advantages, and the new role that are playing in the treatment for NMSC and other pathologies.

Lay Summary

Nom-melanoma skin cancer is increasing its incidence worldwide and this trend is expected to continue. Treatment is expensive and either invasive or presents adverse effects. Interpenetrating and semi-interpenetrating polymer networks are smart biomaterials with tuneable properties that can be used to improve the treatment of these cancers and other pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paolino G, Donati M, Didona D, Mercuri SR, Cantisani C. Histology of non-melanoma skin cancers: an update. Biomedicine. 2017;5:1–20. https://doi.org/10.1155/2017/2606271.

    Article  CAS  Google Scholar 

  2. Orthaber K, Pristovnik M, Skok K, Perić B, Maver U. Skin cancer and its treatment: novel treatment approaches with emphasis on nanotechnology. J Nanomater [Internet]. 2017. [cited 2018 Jan 11]. Available from: https://www.hindawi.com/journals/jnm/2017/2606271/abs/

  3. Amaral T, Garbe C. Non-melanoma skin cancer: new and future synthetic drug treatments. Expert Opin Pharmacother. 2017;18:689–99. https://doi.org/10.1080/14656566.2017.1316372.

    Article  CAS  Google Scholar 

  4. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D. Epidemiological trends in skin cancer. Dermatol Pract Concept. 2017;7:1–6. https://doi.org/10.5826/dpc.0702a01.

    Article  Google Scholar 

  5. Kauvar ANB, Cronin T, Roenigk R, Hruza G, Bennett R, American Society for Dermatologic Surgery. Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methods. Dermatol Surg. 2015;41:550–71. https://doi.org/10.1097/DSS.0000000000000296.

    Article  CAS  Google Scholar 

  6. Gruber P, Bhimji SS. Cancer, Skin (Integument). StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2017. [cited 2017 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK441949/

    Google Scholar 

  7. Wu X, Elkin EE, Marghoob AA. Burden of basal cell carcinoma in USA. Future Oncol. 2015;11:2967–74. https://doi.org/10.2217/fon.15.180.

    Article  CAS  Google Scholar 

  8. Doran CM, Ling R, Byrnes J, Crane M, Searles A, Perez D, Shakeshaft A Estimating the economic costs of skin cancer in New South Wales, Australia. BMC Public Health [Internet]. 2015 [cited 2018 Jan 12];15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581089/

  9. Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer—the role of sunlight. Adv Exp Med Biol. 2008;624:89–103. https://doi.org/10.1007/978-0-387-77574-6_8.

    Article  Google Scholar 

  10. Wehner MR, Chren M-M, Nameth D, Choudhry A, Gaskins M, Nead KT, et al. International prevalence of indoor tanning: a systematic review and meta-analysis. JAMA Dermatol. 2014;150:390–400. https://doi.org/10.1001/jamadermatol.2013.6896.

    Article  Google Scholar 

  11. Birch-Johansen F, Jensen A, Mortensen L, Olesen AB, Kjær SK. Trends in the incidence of nonmelanoma skin cancer in Denmark 1978-2007: rapid incidence increase among young Danish women. Int J Cancer. 2010;127:2190–8. https://doi.org/10.1002/ijc.25411.

    Article  CAS  Google Scholar 

  12. Perera E, Gnaneswaran N, Staines C, Win AK, Sinclair R. Incidence and prevalence of non-melanoma skin cancer in Australia: a systematic review. Aust J Dermatol. 2015;56:258–67. https://doi.org/10.1111/ajd.12282.

    Article  Google Scholar 

  13. Rubió-Casadevall J, Hernandez-Pujol AM, Ferreira-Santos MC, Morey-Esteve G, Vilardell L, Osca-Gelis G, et al. Trends in incidence and survival analysis in non-melanoma skin cancer from 1994 to 2012 in Girona, Spain: a population-based study. Cancer Epidemiol. 2016;45:6–10. https://doi.org/10.1016/j.canep.2016.09.001.

    Article  Google Scholar 

  14. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166:1069–80.

    Article  CAS  Google Scholar 

  15. de Souza FM, Baroni EDRV, Montemór Netto MR. Analysis of the histomorphologic profile of invasive cutaneous squamous cell carcinoma from 2002 to 2011 in a pathology laboratory in the region of Campos Gerais, Brazil. An Bras Dermatol. 2017;92:81–5. https://doi.org/10.1590/abd1806-4841.20174691.

    Article  Google Scholar 

  16. Pinedo-Vega JL, Castañeda-Lopez R, Dávila-Rangel JI, Mireles-García F, Ríos-Martínez C, López-Saucedo A. Skin cancer incidence in Zacatecas. Rev Méd Inst Mex Seguro Soc. 2014;52:282–9.

    Google Scholar 

  17. Tripp MK, Watson M, Balk SJ, Swetter SM, Gershenwald JE. State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA Cancer J Clin [Internet]. 2016 [cited 2018 Jan 12]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124531/

  18. Parenteau NL, Nolte CM, Bilbo P, Rosenberg M, Wilkins LM, Johnson EW, et al. Epidermis generated in vitro: practical considerations and applications. J Cell Biochem. 1991;45:245–51. https://doi.org/10.1002/jcb.240450304.

    Article  CAS  Google Scholar 

  19. Bernerd F. Human skin reconstructed in vitro as a model to study the keratinocyte, the fibroblast and their interactions: photodamage and repair processes. J Soc Biol. 2005;199:313–20.

    Article  CAS  Google Scholar 

  20. Health Quality Ontario. Ultraviolet phototherapy management of moderate-to-severe plaque psoriasis: an evidence-based analysis. Ont Health Technol Assess Ser. 2009;9:1–66.

    Google Scholar 

  21. Feller L, Khammissa RAG, Kramer B, Altini M, Lemmer J. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face. Head Face Med [Internet]. 2016 [cited 2018 Jan 12];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744388/

  22. Marzuka AG, Book SE. Basal cell carcinoma: pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J Biol Med. 2015;88:167–79.

    CAS  Google Scholar 

  23. Board PATE. Skin Cancer Treatment (PDQ®): Health Professional Version [Internet]. National Cancer Institute (US). 2018 [cited 2018 May 13]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK65928/

  24. Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, et al. from normal skin to squamous cell carcinoma: a quest for novel biomarkers. Dis Markers [Internet]. 2016 [cited 2018 Jan 12]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011506/

  25. Adams CC, Thomas B, Bingham JL. Cutaneous squamous cell carcinoma with perineural invasion: a case report and review of the literature. Cutis. 2014;93:141–4.

    Google Scholar 

  26. Harris BN, Bayoumi A, Rao S, Moore MG, Farwell DG, Bewley AF. Factors associated with recurrence and regional adenopathy for head and neck cutaneous squamous cell carcinoma. Otolaryngol Head Neck Surg. 2017;156:863–9. https://doi.org/10.1177/0194599817697053.

    Article  Google Scholar 

  27. Verburg M, Lang M, Mühlstädt M, Klein A, Schauber J, Sattler EC, et al. Cutaneous squamous cell carcinoma with perineural invasion: report on eight cases and review of the literature. Dermatology. 2015;230:135–42. https://doi.org/10.1159/000368771.

    Article  Google Scholar 

  28. Robbins H, Engels E, Roberts J, Arron S. After a transplant: new dangers [Internet]. Skin Cancer Found. 2018 [cited 2018 Jan 12]. Available from: https://www.skincancer.org/prevention/are-you-at-risk/transplants

  29. Naldi L, Venturuzzo A, Invernizzi P. Dermatological complications after solid organ transplantation. Clin Rev Allergy Immunol. 2017;54:185–212. https://doi.org/10.1007/s12016-017-8657-9.

    Article  Google Scholar 

  30. Rizvi SMH, Aagnes B, Holdaas H, Gude E, Boberg KM, Bjørtuft Ø, et al. Long-term change in the risk of skin cancer after organ transplantation: a population-based nationwide cohort study. JAMA Dermatol. 2017;153:1270–7. https://doi.org/10.1001/jamadermatol.2017.2984.

    Article  Google Scholar 

  31. Dubas LE, Ingraffea A. Nonmelanoma skin cancer. Facial Plast Surg Clin. 2013;21:43–53. https://doi.org/10.1016/j.fsc.2012.10.003.

    Article  Google Scholar 

  32. Schmitt JV, Miot HA. Actinic keratosis: a clinical and epidemiological revision. An Bras Dermatol. 2012;87:425–34.

    Article  Google Scholar 

  33. Hillen U, Leiter U, Haase S, Kaufmann R, Becker J, Gutzmer R, et al. Advanced cutaneous squamous cell carcinoma: a retrospective analysis of patient profiles and treatment patterns-Results of a non-interventional study of the DeCOG. Eur J Cancer. 2018;96:34–43. https://doi.org/10.1016/j.ejca.2018.01.075.

    Article  Google Scholar 

  34. NCI Term Browser [Internet]. [cited 2018 May 16]. Available from: https://ncit.nci.nih.gov/ncitbrowser/pages/multiple_search.jsf?nav_type=terminologies

  35. Migden MR, Chang ALS, Dirix L, Stratigos AJ, Lear JT. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat Rev. 2018;64:1–10. https://doi.org/10.1016/j.ctrv.2017.12.009.

    Article  CAS  Google Scholar 

  36. Abidi A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharm. 2014;46:3–12. https://doi.org/10.4103/0253-7613.124884.

    Article  CAS  Google Scholar 

  37. Jain S, Song R, Xie J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. OncoTargets Ther. 2017;10:1645–53. https://doi.org/10.2147/OTT.S130910.

    Article  CAS  Google Scholar 

  38. Minami Y, Minami H, Miyamoto T, Yoshimoto G, Kobayashi Y, Munakata W, et al. Phase I study of glasdegib (PF-04449913), an oral smoothened inhibitor, in Japanese patients with select hematologic malignancies. Cancer Sci. 2017;108:1628–33. https://doi.org/10.1111/cas.13285.

    Article  CAS  Google Scholar 

  39. Wishart DS, Feunang Y, Guo A, Lo E, Marcu A, Grant J, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017:D1074–82.

    Article  Google Scholar 

  40. Sharquie KE, Noaimi AA. Basal cell carcinoma: topical therapy versus surgical treatment. J Saudi Soc Dermatol Dermatol Surg. 2012;16:41–51. https://doi.org/10.1016/j.jssdds.2012.06.002.

    Article  Google Scholar 

  41. Neubert T, Lehmann P. Bowen’s disease—a review of newer treatment options. Ther Clin Risk Manag. 2008;4:1085–95.

    Article  CAS  Google Scholar 

  42. Tanghetti E, Werschler P. Comparison of 5% 5-fluorouracil cream and 5% imiquimod cream in the management of actinic keratoses on the face and scalp. J Drugs Dermatol. 2007;6:144–7.

    Google Scholar 

  43. Menzies AM, Long GV. Systemic treatment for BRAF-mutant melanoma: where do we go next? Lancet Oncol. 2014;15:e371–81.

    Article  Google Scholar 

  44. Devji T, Levine O, Neupane B, Beyene J, Xie F. Systemic therapy for previously untreated advanced BRAF-mutated melanoma: a systematic review and network meta-analysis of randomized clinical trials. JAMA Oncol. 2017;3:366–73. https://doi.org/10.1001/jamaoncol.2016.4877.

    Article  Google Scholar 

  45. Fecher LA, Sharfman WH. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options—role of smoothened inhibitors. Biologics. 2015;9:129–40. https://doi.org/10.2147/BTT.S54179.

    Article  CAS  Google Scholar 

  46. Goodman AM, Kato S, Cohen PR, Boichard A, Frampton G, Miller V, et al. Genomic landscape of advanced basal cell carcinoma: implications for precision treatment with targeted and immune therapies. Oncoimmunology. 2018;7:e1404217. https://doi.org/10.1080/2162402X.2017.1404217.

    Article  Google Scholar 

  47. American Cancer Society. About Melanoma Skin Cancer [Internet]. Am Cancer Soc. 2018. [cited 2018 May 14]. Available from: https://www.cancer.org/cancer/melanoma-skin-cancer/about.html

  48. Brugnara S, Sicher M, Bonandini EM, Donner D, Chierichetti F, Barbareschi M, et al. Treatment with combined dabrafenib and trametinib in BRAFV600E-mutated metastatic malignant melanoma: a case of long-term complete response after treatment cessation. Drugs Context. 2018;7:212515. https://doi.org/10.7573/dic.212515.

    Article  Google Scholar 

  49. Gaudy-Marqueste C, Dussouil AS, Carron R, Troin L, Malissen N, Loundou A, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer. 2017;84:44–54. https://doi.org/10.1016/j.ejca.2017.07.017.

    Article  CAS  Google Scholar 

  50. Boyce DE, Shokrollahi K. Reconstructive surgery. BMJ. 2006;332:710–2. https://doi.org/10.1136/bmj.332.7543.710.

    Article  Google Scholar 

  51. Taveira SF, Lopez RFV. Topical administration of anticancer drugs for skin cancer treatment. 2011 [cited 2018 Jan 12]; Available from: http://www.intechopen.com/books/skin-cancers-risk-factors-prevention-and-therapy/topical-administration-of-anticancer-drugs-for-skin-cancer-treatment. doi:https://doi.org/10.5772/27785

    Google Scholar 

  52. Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater. 2015;4:1114–33. https://doi.org/10.1002/adhm.201500001.

    Article  CAS  Google Scholar 

  53. Fouassier JP, Lalevée J. Photochemical production of interpenetrating polymer networks; simultaneous initiation of radical and cationic polymerization reactions. Polymers. 2014;6:2588–610. https://doi.org/10.3390/polym6102588.

    Article  CAS  Google Scholar 

  54. Atkin R, Davies P, Hardy J, Vincent B. Preparation of aqueous core/polymer shell microcapsules by internal phase separation. Macromolecules. 2004;37:7979–85. https://doi.org/10.1021/ma048902y.

    Article  CAS  Google Scholar 

  55. Sperling LH. Interpenetrating polymer networks: an overview. Chapter 1 p 3–38 in Interpenetr Polym Netw. Am Chem Soc. 1994 [cited 2017 Sep 12]. p. 3–38. Available from: doi:https://doi.org/10.1021/ba-1994-0239.ch001

    Chapter  Google Scholar 

  56. Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems [Internet]. J. Drug Deliv. 2014, Article ID 583612. doi:https://doi.org/10.1155/2014/583612.

    Article  Google Scholar 

  57. Geng H. A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees. Carbohydr Polym. 2018;186:208–16. https://doi.org/10.1016/j.carbpol.2018.01.031.

    Article  CAS  Google Scholar 

  58. Nguyen VD, Pal A, Snijkers F, Colomb-Delsuc M, Leonetti G, Otto S, et al. Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker. Soft Matter. 2016;12:432–40. https://doi.org/10.1039/c5sm02088c.

    Article  CAS  Google Scholar 

  59. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng B Rev. 2010;16:371–83. https://doi.org/10.1089/ten.teb.2009.0639.

    Article  CAS  Google Scholar 

  60. Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, et al. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. Sci Rep. 2015;5:9017. https://doi.org/10.1038/srep09017.

    Article  CAS  Google Scholar 

  61. Abbadessa A, Landín M, Oude Blenke E, Hennink WE, Vermonden T. Two-component thermosensitive hydrogels: phase separation affecting rheological behavior. Eur Polym J. 2017;92:13–26. https://doi.org/10.1016/j.eurpolymj.2017.04.029.

    Article  CAS  Google Scholar 

  62. Poursamar SA, Hatami J, Lehner AN, da Silva CL, Ferreira FC, Antunes APM. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Mater Sci Eng C. 2015;48:63–70. https://doi.org/10.1016/j.msec.2014.10.074.

    Article  CAS  Google Scholar 

  63. Sornkamnerd S, Okajima MK, Kaneko T. Tough and porous hydrogels prepared by simple lyophilization of LC gels. ACS Omega. 2017;2:5304–14. https://doi.org/10.1021/acsomega.7b00602.

    Article  CAS  Google Scholar 

  64. Siemann U. Solvent cast technology—a versatile tool for thin film production. SpringerLink; 2005. p. 1–14. doi:https://doi.org/10.1007/b107336.

    Google Scholar 

  65. Lipatov YS, Alekseeva T. Phase-separated interpenetrating polymer networks. Springer Science & Business Media; 2007. doi:https://doi.org/10.1007/12_2007_116.

  66. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6:105–21. https://doi.org/10.1016/j.jare.2013.07.006.

    Article  CAS  Google Scholar 

  67. Fonseca KB, Granja PL, Barrias CC. Engineering proteolytically-degradable artificial extracellular matrices. Prog Polym Sci. 2014;39:2010–29. https://doi.org/10.1016/j.progpolymsci.2014.07.003.

    Article  CAS  Google Scholar 

  68. Khan F, Tanaka M. Designing smart biomaterials for tissue engineering. Int J Mol Sci. 2017;19 https://doi.org/10.3390/ijms19010017.

    Article  Google Scholar 

  69. Thaya R, Vaseeharan B, Sivakamavalli J, Iswarya A, Govindarajan M, Alharbi NS, et al. Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb Pathog. 2017;114:17–24. https://doi.org/10.1016/j.micpath.2017.11.011.

    Article  CAS  Google Scholar 

  70. An J, Ji Z, Wang D, Luo Q, Li X. Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities. Mater Sci Eng C Mater Biol Appl. 2014;36:33–41. https://doi.org/10.1016/j.msec.2013.11.037.

    Article  CAS  Google Scholar 

  71. Kessler L, Gehrke S, Winnefeld M, Huber B, Hoch E, Walter T, et al. Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering. J Tissue Eng. 2017;8:2041731417744157. https://doi.org/10.1177/2041731417744157.

    Article  Google Scholar 

  72. Huber B, Borchers K, Tovar GE, Kluger PJ. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. J Biomater Appl. 2016;30:699–710. https://doi.org/10.1177/0885328215587450.

    Article  CAS  Google Scholar 

  73. Mallikarjuna B, Madhusudana Rao K, Pallavi K, Chowdoji Rao K, Subha MCS. Biodegradable interpenetrating polymer network hydrogel membranes for controlled release of anticancer drug. Asian J Pharm. 2015;9:129–36. https://doi.org/10.22377/ajp.v9i2.442.

    Article  CAS  Google Scholar 

  74. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65:1172–87. https://doi.org/10.1016/j.addr.2013.04.002.

    Article  CAS  Google Scholar 

  75. Bhardwaj V, Harit G, Kumar S. Interpenetrating polymer network (IPN): novel approach in drug delivery. Int J Drug Dev Res [Internet]. 2015. [cited 2017 Sep 13];4. Available from: http://www.ijddr.in/abstract/interpenetrating-polymer-network-ipn-novel-approach-in-drugdelivery-5004.html

  76. Soman A, Mathew F, Chacko AJ, Alias M, Vinoda G. Interpenetrating polymer network (Ipn)—hydrogels. Pharma Innovation. 2013;3:59–66.

    Google Scholar 

  77. Koul V, Mohamed R, Kuckling D, Adler H-JP, Choudhary V. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf B Biointerfaces. 2011;83:204–13. https://doi.org/10.22377/ajp.v9i2.442.

    Article  CAS  Google Scholar 

  78. Sarika PR, Anil Kumar PR, Raj DK, James NR. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Carbohydr Polym. 2015;119:118–25. https://doi.org/10.1016/j.carbpol.2014.11.037.

    Article  CAS  Google Scholar 

  79. Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, et al. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int J Nanomedicine. 2015;10:7291–305. https://doi.org/10.2147/IJN.S89066.

    Article  CAS  Google Scholar 

  80. Ghanaati S, Kovács A, Barbeck M, Lorenz J, Teiler A, Sadeghi N, et al. Bilayered, non-cross-linked collagen matrix for regeneration of facial defects after skin cancer removal: a new perspective for biomaterial-based tissue reconstruction. J Cell Commun Signal. 2016;10:3–15. https://doi.org/10.1007/s12079-015-0313-7.

    Article  Google Scholar 

  81. Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care. 2014;3:511–29.

    Article  Google Scholar 

  82. Sadeghi-Avalshahr A, Nokhasteh S, Molavi AM, Khorsand-Ghayeni M, Mahdavi-Shahri M. Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater. 2017;4:309–14. https://doi.org/10.1016/j.msec.2016.04.073.

    Article  CAS  Google Scholar 

  83. Lu H, Oh HH, Kawazoe N, Yamagishi K, Chen G. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Sci Technol Adv Mater. 2012;13:064210. https://doi.org/10.1088/1468-6996/13/6/064210.

    Article  CAS  Google Scholar 

  84. Busra FM, Lokanathan Y, Nadzir MM, Saim A, Idrus RBH, Chowdhury SR. Attachment, proliferation, and morphological properties of human dermal fibroblasts on ovine tendon collagen scaffolds: a comparative study. Malays J Med Sci. 2017;24:33–43. https://doi.org/10.21315/mjms2017.24.2.5.

    Article  Google Scholar 

  85. Asti A, Gioglio L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs. 2014;37:187–205.

    Google Scholar 

  86. Madaghiele M, Demitri C, Sannino A, Ambrosio L. Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma. 2014;2:153–61. https://doi.org/10.4103/2321-3868.143616.

    Article  Google Scholar 

  87. Anish S. Skin substitutes in dermatology. Indian J Dermatol Venereol Leprol. 2015;81:175–8. https://doi.org/10.4103/0378-6323.152288.

    Article  Google Scholar 

  88. Nessler MB, Puchała J, Chrapusta A, Nessler K, Drukała J. Levels of plasma matrix metalloproteinases (MMP-2 and MMP-9) in response to INTEGRA® dermal regeneration template implantation. Med Sci Monit. 2014;20:91–6. https://doi.org/10.12659/MSM.889135.

    Article  CAS  Google Scholar 

  89. Prystowsky JH, Siegel DM, Ascherman JA. Artificial skin for closure and healing of wounds created by skin cancer excisions. Dermatol Surg. 2001;27:648–53. discussion 653-654

    CAS  Google Scholar 

  90. Han S-K, Kim S-Y, Choi R-J, Jeong S-H, Kim W-K. Comparison of tissue-engineered and artificial dermis grafts after removal of basal cell carcinoma on face—a pilot study. Dermatol Surg. 2014;40:460–7. https://doi.org/10.1111/dsu.12446.

    Article  CAS  Google Scholar 

  91. Pereira RF, Bártolo PJ. Degradation behavior of biopolymer-based membranes for skin tissue regeneration. Procedia Eng. 2013;59:285–91. https://doi.org/10.1016/j.proeng.2013.05.123.

    Article  CAS  Google Scholar 

  92. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79. https://doi.org/10.1016/j.ejpb.2015.03.018.

    Article  CAS  Google Scholar 

  93. Pelipenko J, Kocbek P, Kristl J. Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci. 2015;66:29–35. https://doi.org/10.1016/j.ejps.2014.09.022.

    Article  CAS  Google Scholar 

  94. Kuo K-C, Lin R-Z, Tien H-W, Wu P-Y, Li Y-C, Melero-Martin JM, et al. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater. 2015;27:151–66.

    Article  CAS  Google Scholar 

  95. Hanjaya-Putra D, Shen Y-I, Wilson A, Fox-Talbot K, Khetan S, Burdick JA, et al. Integration and regression of implanted engineered human vascular networks during deep wound healing. Stem Cells Transl Med. 2013;2:297–306. https://doi.org/10.5966/sctm.2012-0111.

    Article  CAS  Google Scholar 

  96. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;6:29977. https://doi.org/10.1038/srep29977.

    Article  CAS  Google Scholar 

  97. He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, et al. Bioprinting of skin constructs for wound healing. Burns Trauma. 2018;6:29977. https://doi.org/10.1186/s41038-017-0104-x.

    Article  Google Scholar 

  98. Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8:e57741. https://doi.org/10.1371/journal.pone.0057741.

    Article  CAS  Google Scholar 

  99. Feng S-S. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev Med Devices. 2004;1:115–25. https://doi.org/10.1586/17434440.1.1.115.

    Article  CAS  Google Scholar 

  100. Fonseca AC, Serra AC, Coelho JFJ. Bioabsorbable polymers in cancer therapy: latest developments. EPMA J. 2015;6:22. https://doi.org/10.1186/s13167-015-0045-z.

    Article  Google Scholar 

  101. Nigro V, Angelini R, Bertoldo M, Bruni F, Ricci MA, Ruzicka B. Dynamical behavior of microgels of interpenetrated polymer networks. Soft Matter. 2017;13:5185–93. https://doi.org/10.1039/c7sm00739f.

    Article  CAS  Google Scholar 

  102. Gao S-Q, Maeda T, Okano K, Palczewski K. A microparticle/hydrogel combination drug-delivery system for sustained release of retinoids. Invest Ophthalmol Vis Sci. 2012;53:6314–23. https://doi.org/10.1167/iovs.12-10279.

    Article  CAS  Google Scholar 

  103. Rassu G, Salis A, Porcu EP, Giunchedi P, Roldo M, Gavini E. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases. Carbohydr Polym. 2016;136:1338–47. https://doi.org/10.1016/j.carbpol.2015.10.048.

    Article  CAS  Google Scholar 

  104. Campbell KT, Hadley DJ, Kukis DL, Silva EA. Alginate hydrogels allow for bioactive and sustained release of VEGF-C and VEGF-D for lymphangiogenic therapeutic applications. PLoS One. 2017;12:e0181484. https://doi.org/10.1371/journal.pone.0181484.

    Article  CAS  Google Scholar 

  105. Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J. Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater. 2007;3:23–31. https://doi.org/10.1016/j.actbio.2006.06.007.

    Article  CAS  Google Scholar 

  106. Hao X, Silva EA, Månsson-Broberg A, Grinnemo K-H, Siddiqui AJ, Dellgren G, et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res. 2007;75:178–85. https://doi.org/10.1016/j.cardiores.2007.03.028.

    Article  CAS  Google Scholar 

  107. Salis A, Rassu G, Budai-Szűcs M, Benzoni I, Csányi E, Berkó S, et al. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study. Expert Opin Drug Deliv. 2015;12:1583–96. https://doi.org/10.1517/17425247.2015.1042452.

    Article  CAS  Google Scholar 

  108. Kaneda Y, Tsutsumi Y, Yoshioka Y, Kamada H, Yamamoto Y, Kodaira H, et al. The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials. 2004;25:3259–66.

    Article  CAS  Google Scholar 

  109. Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 2013;172:48–61. https://doi.org/10.1016/j.jconrel.2013.07.022.

    Article  CAS  Google Scholar 

  110. Dalwadi C, Patel G. Application of nanohydrogels in drug delivery systems: recent patents review. Recent Pat Nanotechnol. 2015;9:17–25.

    Article  CAS  Google Scholar 

  111. Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol. 2015;72:1313–22. https://doi.org/10.1016/j.ijbiomac.2014.10.052.

    Article  CAS  Google Scholar 

  112. Sahu S, Saraf S, Kaur CD, Saraf S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci. 2013;16:601–9.

    Article  CAS  Google Scholar 

  113. Dutta S, Parida S, Maiti C, Banerjee R, Mandal M, Dhara D. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci. 2016;467:70–80. https://doi.org/10.1016/j.jcis.2016.01.008.

    Article  CAS  Google Scholar 

  114. Gong C, Shi S, Wu L, Gou M, Yin Q, Guo Q, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater. 2009;5:3358–70. https://doi.org/10.1016/j.actbio.2009.05.025.

    Article  CAS  Google Scholar 

  115. Sahoo B, Devi KSP, Banerjee R, Maiti TK, Pramanik P, Dhara D. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces. 2013;5:3884–93.

    Article  CAS  Google Scholar 

  116. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci. 2014;62:243–50. https://doi.org/10.1016/j.ejps.2014.05.021.

    Article  CAS  Google Scholar 

  117. Li T, Zhang M, Wang J, Wang T, Yao Y, Zhang X, et al. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J. 2015;18:146–55. https://doi.org/10.1208/s12248-015-9828-3.

    Article  CAS  Google Scholar 

  118. Venâncio JH, Andrade LM, Esteves NLS, Brito LB, Valadares MC, Oliveira GAR, et al. Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers. J Pharm Pharmacol. 2017;69:1318–26. https://doi.org/10.1111/jphp.12772.

    Article  CAS  Google Scholar 

  119. Zhao L, Zhu L, Liu F, Liu C, Shan-Dan, Wang Q, et al. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm. 2011;410:83–91.

    Article  CAS  Google Scholar 

  120. Montanari E, Capece S, Di Meo C, Meringolo M, Coviello T, Agostinelli E, et al. Hyaluronic acid nanohydrogels as a useful tool for BSAO immobilization in the treatment of melanoma cancer cells. Macromol Biosci. 2013;13:1185–94. https://doi.org/10.1002/mabi.201300114.

    Article  CAS  Google Scholar 

  121. Agostinelli E, Condello M, Tempera G, Macone A, Bozzuto G, Ohkubo S, et al. The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach. Int J Oncol. 2014;45:1109–22. https://doi.org/10.3892/ijo.2014.2502.

    Article  CAS  Google Scholar 

  122. Lee JY, Kim KS, Kang YM, Kim ES, Hwang S-J, Lee HB, et al. In vivo efficacy of paclitaxel-loaded injectable in situ-forming gel against subcutaneous tumor growth. Int J Pharm. 2010;392:51–6. https://doi.org/10.1016/j.ijpharm.2010.03.033.

    Article  CAS  Google Scholar 

  123. Liu J, Qi C, Tao K, Zhang J, Zhang J, Xu L, et al. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl Mater Interfaces. 2016;8:6411–22. https://doi.org/10.1021/acsami.6b00959.

    Article  CAS  Google Scholar 

  124. Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, et al. Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids. 2010;38:353–68. https://doi.org/10.1007/s00726-009-0431-8.

    Article  CAS  Google Scholar 

  125. Demers N, Agostinelli E, Averill-Bates DA, Fortier G. Immobilization of native and poly(ethylene glycol)-treated ('PEGylated’) bovine serum amine oxidase into a biocompatible hydrogel. Biotechnol Appl Biochem. 2001;33:201–7.

    Article  CAS  Google Scholar 

  126. Cross D, Burmester JK. Gene therapy for cancer treatment: past, Present and Future. Clin Med Res. 2006;4:218–27.

    Article  CAS  Google Scholar 

  127. Yu J, Luo X, Huang H, Zhai Z, Shen Z, Lin H. Clinical characteristics of malignant melanoma in Southwest China: a single-center series of 82 consecutive cases and a meta-analysis of 958 reported cases. PLoS One. 2016;11:e0165591. https://doi.org/10.1371/journal.pone.0165591.

    Article  CAS  Google Scholar 

  128. Mokhtarzadeh A, Alibakhshi A, Yaghoobi H, Hashemi M, Hejazi M, Ramezani M. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin Biol Ther. 2016;16:771–85. https://doi.org/10.1517/14712598.2016.1169269.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by SEP-PRODEP award 511-6/17-9932 postdoctoral funding 993201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Jimenez-Rosales.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Rosales, A., Flores-Merino, M.V. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. Regen. Eng. Transl. Med. 4, 187–205 (2018). https://doi.org/10.1007/s40883-018-0061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-018-0061-3

Keywords

Navigation