Skip to main content

Advertisement

Log in

Understanding the charismatic potential of nanotechnology to treat skin carcinoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Carcinoma is a condition that continues to pose a significant challenge, despite current medical advances. Skin carcinoma is the leading cause of cancer, and it has seen a massive increase all over the world. The challenges with current treatment are due to toxicity that leads to many more skin complications. Due to this to avoid such complications by designing diverse nanoparticles as delivery carriers, nanomedicine is employed as a hub for diagnostics and therapy. Liposomes, gold nanoparticles, transferases, nanofibers, etc., can all be used as delivery nanocarriers. These nanoparticles’ structures and characteristics protect the medicine from degradation and improve its stability. Surface modifying agents and procedures are employed to functionalize nanoparticles, resulting in smart delivery systems. The application of nanotechnology-based approaches systematically increases drug delivery to target cells. Skin cancer has several challenges, including a long time to diagnose early types of cancer and a slower growth rate. This review focuses on innovative skin cancer therapy techniques, focusing on nanotechnology and the challenges associated with current treatment of skin cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article references.

Abbreviations

AuNP:

Gold nanoparticle

BCC:

Basal cell carcinoma

CPD:

Cyclopyrimidine dimer

DAMPs:

Danger-associated molecular patterns

DNMTs:

DNA methyltransferases

HH:

Hedgehog pathway

MM:

Malignant melanoma

MC1R:

Melanocortin 1 receptor

NMSC:

Nonmelanoma skin cancer

PDT:

Photodynamic therapy

PTT:

Photothermal therapy

ROS:

Reactive oxygen species

SCC:

Squamous cell carcinoma

References

  1. Algarni AM, et al. The epidemiological pattern of skin cancer from 2011 to 2022 among the population of the Aseer region, kingdom of Saudi Arabia. Cancers. 2023;15(18):4612.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vestita M, Tedeschi P, Bonamonte D. Anatomy and physiology of the skin. In: Textbook of plastic and reconstructive surgery: basic principles and new perspectives. New York: Springer; 2022. p. 3–13.

    Chapter  Google Scholar 

  3. Jeihooni AK, et al. Melanoma epidemiology: symptoms, causes, and preventions, in melanoma-standard of care, challenges, and updates in clinical research. London: IntechOpen; 2023.

    Google Scholar 

  4. Casalou C, et al. Loss of ‘epidermal melanin unit’integrity in human skin during melanoma-genesis. Front Oncol. 2022;12:1318.

    Article  Google Scholar 

  5. Mihulecea C-R, Rotaru M. The key factors to melanomagenesis. Life. 2023;13(1):181.

    Article  CAS  Google Scholar 

  6. Elleson KM, DePalo DK, Zager JS. An update on local and systemic therapies for nonmelanoma skin cancer. Expert Rev Anticancer Ther. 2022;22(5):479–89.

    Article  CAS  PubMed  Google Scholar 

  7. Silk AW, et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immunotherapy for the treatment of nonmelanoma skin cancer. J Immunother Cancer. 2022. https://doi.org/10.1136/jitc-2021-004434.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peleva E, et al. Emerging trends and future directions in skin cancer management. In: Harwood CA, ed. Non-melanoma skin cancer. 1st ed. Boca Raton, FL: CRC Press; 2023. p. 1–20.

  9. Rembielak A, et al. Recommendations of the International Society of Geriatric Oncology on skin cancer management in older patients. J Geriatr Oncol. 2023;14:101502.

    Article  CAS  PubMed  Google Scholar 

  10. Goyal K, et al. Unravelling the molecular mechanism of mutagenic factors impacting human health. Environ Sci Pollut Res. 2022;29(41):61993–2013.

    Article  CAS  Google Scholar 

  11. Stark B. Protein-DNA interactions shape the melanoma genome by modulating rates of UV photoproduct formation. Pullman: Washington State University; 2023.

    Google Scholar 

  12. Jassim A, et al. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer. 2023;23(10):710–24.

    Article  CAS  PubMed  Google Scholar 

  13. Winge MC, et al. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer. 2023;23:430–49.

    Article  CAS  PubMed  Google Scholar 

  14. Pourang A, et al. Effects of visible light on mechanisms of skin photoaging. Photodermatol Photoimmunol Photomed. 2022;38(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  15. Reinhardt LS, et al. The role of truncated p53 isoforms in the DNA damage response. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2023;1878:188882.

    Article  Google Scholar 

  16. Abuetabh Y, et al. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med. 2022;54(10):1658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, et al. Environment factors, DNA methylation, and cancer. Environ Geochem Health. 2023. https://doi.org/10.1007/s10653-023-01749-8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA Cancer J Clin. 2023;73(4):376–424.

    Article  PubMed  Google Scholar 

  19. Chen B, et al. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022;7(1):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: emerging role of non-coding rna shuttled by extracellular vesicles. Environ Int. 2023;181:108255.

    Article  PubMed  Google Scholar 

  21. Čeplikas P. Ultra-violet-C light source investigation and application for healthcare premises disinfection. Kaunas: Kauno technologijos universitetas; 2023.

    Google Scholar 

  22. Tavares RSN, et al. Different biological effects of exposure to far-UVC (222 nm) and near-UVC (254 nm) irradiation. J Photochem Photobiol, B. 2023;243:112713.

    Article  CAS  PubMed  Google Scholar 

  23. Díaz DFZ, et al. Skin optical properties from 200 to 300 nm support far UV-C skin-safety in vivo. J Photochem Photobiol, B. 2023;247:112784.

    Article  Google Scholar 

  24. Verma A, et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ Chem Lett. 2023. https://doi.org/10.1007/s10311-023-01649-4.

    Article  Google Scholar 

  25. Vernez D, et al. Ground UV irradiance and 3D rendering techniques to predict anatomical solar UV exposure. Final report for the Swiss National Science Foundation, grant no. 152803. Available from: https://data.snf.ch/grants/grant/152803.

  26. Conte S, et al. Skin cancer prevention across the G7, Australia and New Zealand: a review of legislation and guidelines. Curr Oncol. 2023;30(7):6019–40.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fan W, et al. Narrative review: mechanism of ultraviolet radiation-induced basal cell carcinoma. Front Oral Maxillofac Med. 2023;5:9.

    Article  Google Scholar 

  28. Ansary TM, et al. Immunotherapy for the treatment of squamous cell carcinoma: potential benefits and challenges. Int J Mol Sci. 2022;23(15):8530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neale R, et al. The effects of exposure to solar radiation on human health. Photochem Photobiol Sci. 2023;22:1011–47.

    Article  CAS  PubMed  Google Scholar 

  30. Modestino L, et al. Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps. Cancer Immunol Immunother. 2023;72(10):3363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403.

    Article  PubMed  Google Scholar 

  32. Islam MR, et al. Skin cancer from the perspective of public health concerns: etiology, transmission, diagnosis, treatment, and complications–correspondence. Ann Med Surg. 2023;85(5):2266.

    Google Scholar 

  33. Schmults CD, et al. Basal cell skin cancer, version 2.2024, NCCN Clinical Practice Guidelines in oncology. J Natl Compr Canc Netw. 2023;21(11):1181–203.

    Article  PubMed  Google Scholar 

  34. Brodland DG. Mohs micrographic surgery for melanoma: evidence, controversy, and a Critical Review of Excisional Margin Guidelines. Dermatol Clin. 2023;41(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  35. Anand R, Mallipeddi R. Mohs surgery. Non-melanoma Skin Cancer: Essent for Oncol. 2023. https://doi.org/10.1201/9781003226017.

    Article  Google Scholar 

  36. Aristokleous I, et al. Mohs micrographic surgery revisited: a multidisciplinary, collaborative approach for the treatment of aggressive and recurrent basal cell carcinoma on the head and neck. J Plast Reconstr Aesthet Surg. 2022;75(9):3373–83.

    Article  PubMed  Google Scholar 

  37. Backman E, et al. Curettage vs. cryosurgery for superficial basal cell carcinoma: a prospective, randomised and controlled trial. J Eur Acad Dermatol Venereol. 2022;36(10):1758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hennequin C, et al. Radiation therapy of cutaneous cancers. Cancer/Radiothérapie. 2022;26(1–2):397–403.

    Article  CAS  PubMed  Google Scholar 

  39. Souto EB, et al. Non-melanoma skin cancers: Physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia. 2022;30:100810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng L, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer. 2023;22(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Leo V, et al. Liposomes containing nanoparticles: preparation and applications. Colloids Surf B. 2022;218:112737.

    Article  Google Scholar 

  42. Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif Cells Nanomed Biotechnol. 2023;51(1):428–40.

    Article  CAS  Google Scholar 

  43. Priester MI, Ten Hagen TL. Image guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev. 2022;192:114621.

    Article  Google Scholar 

  44. Marwah M, et al. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res. 2020;30(2):136–49.

    Article  CAS  PubMed  Google Scholar 

  45. Singh S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int J Nanomed. 2018;13(sup1):11–3.

    Article  CAS  Google Scholar 

  46. Cadinoiu AN, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers. 2019;11(9):1515.

    Article  CAS  PubMed Central  Google Scholar 

  47. Hafeez A, Usmani SA, Izhar MP. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023. https://doi.org/10.1007/s00210-023-02670-8.

    Article  Google Scholar 

  48. Albalawi W, et al. Elegant, flexible vesicular nanocarriers for the efficient skin delivery of topically applied drugs. Curr Nanosci. 2023;19(4):493–508.

    Article  CAS  Google Scholar 

  49. Singh D, Kurmi BD, Singh A. Recent advances in nanocarrier-based approaches to atopic dermatitis and emerging trends in drug development and design. Curr Drug Deliv. 2023. https://doi.org/10.2174/1567201820666230508121716.

    Article  PubMed  Google Scholar 

  50. Gayathri H, Sangeetha S. Pharmaceutical development of tamoxifen citrate loaded transferosomal gel for skin cancer by doe approach. J Posit School Psychol. 2022;6:1879–90.

    Google Scholar 

  51. Wadher K, Trivedi S, Umekar M. Formulation and cytotoxic characterization of rutin loaded flexible transferosomes for topical delivery: ex-vivo and in-vitro evaluation.

  52. Jain S, Jain N. PUB040 formulation and evaluation of embelin loaded transfersome for effective treatment of skin cancer. J Thorac Oncol. 2017;12(11):S2378.

    Article  Google Scholar 

  53. Rahim NA, et al. Investigation of antiproliferative mechanisms of Alstonia angustiloba-silver nanoparticles in skin squamous cell carcinoma (A431 cell line). J Mol Struct. 2022;1250:131814.

    Article  CAS  Google Scholar 

  54. Muhammad S, et al. Synthesis of silver oxide nanoparticles and its antimicrobial, anticancer, anti-inflammatory, wound healing, and immunomodulatory activities-a review. Acta Scientific Applied Physics. 2023. 3(7)

  55. Saber MM, Mirtajani SB, Karimzadeh K. Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. Journal of Drug Delivery Science and Technology. 2018;47:375–9.

    Article  CAS  Google Scholar 

  56. Capanema NS, et al. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl Nano Mater. 2019;2(11):7393–408.

    Article  CAS  Google Scholar 

  57. Rana K, et al. Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. Int J Pharm. 2022;620:121744.

    Article  CAS  PubMed  Google Scholar 

  58. Kalashgrani MY, Javanmardi N. Multifunctional gold nanoparticle: as novel agents for cancer treatment. Adv Appl NanoBio-Technol. 2022;3(3):1–6.

    CAS  Google Scholar 

  59. Das CA, et al. Nanomaterials in anticancer applications and their mechanism of action-a review. Nanomed Nanotechnol Biol Med. 2023;47:102613.

    Article  CAS  Google Scholar 

  60. Khan MI, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater. 2022;5(3):971–1012.

    Article  CAS  PubMed  Google Scholar 

  61. Safwat MA, et al. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm. 2018;15(6):2194–205.

    Article  CAS  PubMed  Google Scholar 

  62. Nirmala JG, et al. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv Powder Technol. 2017;28(4):1170–84.

    Article  CAS  Google Scholar 

  63. Niu J, et al. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces. 2017;9(11):9388–401.

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, et al. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J Biol Eng. 2022;16(1):1–12.

    Article  Google Scholar 

  65. Bober Z, Bartusik-Aebisher D, Aebisher D. Application of dendrimers in anticancer diagnostics and therapy. Molecules. 2022;27(10):3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu Z, et al. Smart polymeric nanoparticles in cancer immunotherapy. Pharmaceutics. 2023;15(3):775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ybarra DE, et al. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer. OpenNano. 2022;7:100053.

    Article  Google Scholar 

  68. Venuganti VVK, et al. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide–dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale. 2015;7(9):3903–14.

    Article  CAS  PubMed  Google Scholar 

  69. Shetty PK, et al. Skin delivery of EGCG and silibinin: potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech. 2017;18:2346–57.

    Article  CAS  PubMed  Google Scholar 

  70. Abdel-Mageed HM, et al. The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: an updated review. J Microencapsul. 2022;39(1):72–94.

    Article  CAS  PubMed  Google Scholar 

  71. Aanisah N, et al. Development of solid lipid nanoparticle-loaded polymeric hydrogels containing antioxidant and photoprotective bioactive compounds of safflower (Carthamus tinctorius L.) for improved skin delivery. Langmuir. 2023;39(5):1838–51.

    Article  CAS  PubMed  Google Scholar 

  72. Mohammed HA, et al. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnol Rev. 2023;12(1):20220517.

    Article  CAS  Google Scholar 

  73. Tupal A, et al. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J Microencapsul. 2016;33(4):372–80.

    Article  CAS  PubMed  Google Scholar 

  74. Khallaf RA, Salem HF, Abdelbary A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv. 2016;23(9):3452–60.

    Article  CAS  PubMed  Google Scholar 

  75. Cassano R, et al. Recent advances in nanotechnology for the treatment of melanoma. Molecules. 2021;26(4):785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chauhan N, et al. Ethosomes: a novel drug carrier. Ann Med Surg. 2022;82:104595.

    Article  Google Scholar 

  77. Jafari A, et al. Ethosomes as dermal/transdermal drug delivery systems: applications, preparation and characterization. J Liposome Res. 2023;33(1):34–52.

    Article  CAS  PubMed  Google Scholar 

  78. Waqar MA, et al. Ethosomes: a novel approach for the delivery of drug. Int J Pharm & Integr Health Sci. 2023;4(2):31–46.

    Google Scholar 

  79. Moolakkadath T, et al. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int J Pharm. 2019;560:78–91.

    Article  CAS  PubMed  Google Scholar 

  80. Peram MR, et al. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res. 2019;29(3):291–311.

    Article  CAS  PubMed  Google Scholar 

  81. Soni K, et al. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J Microencapsul. 2020;37(2):91–108.

    Article  CAS  PubMed  Google Scholar 

  82. Maleki H, et al. Nanofiber-based systems against skin cancers: therapeutic and protective approaches. J Drug Deliv Sci Technol. 2023;82:104367.

    Article  CAS  Google Scholar 

  83. Patel PR, Gundloori RVN. A review on electrospun nanofibers for multiple biomedical applications. Polym Adv Technol. 2023;34(1):44–63.

    Article  CAS  Google Scholar 

  84. Yang G, et al. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano. 2015;9(2):1161–74.

    Article  CAS  PubMed  Google Scholar 

  85. Suneet K, et al. Magnetic nanofibers based bandage for skin cancer treatment: a non-invasive hyperthermia therapy. Cancer Rep. 2020;3(6):e1281.

    Article  CAS  Google Scholar 

  86. Patel G, Yadav BK. Formulation, characterization and in vitro cytotoxicity of 5-fluorouracil loaded polymeric electrospun nanofibers for the treatment of skin cancer. Recent Pat Nanotechnol. 2019;13(2):114–28.

    Article  CAS  PubMed  Google Scholar 

  87. Pukale SS, et al. Coenzyme Q10 loaded lipid-polymer hybrid nanoparticles in gel for the treatment of psoriasis like skin condition. J Drug Deliv Sci Technol. 2022;76:103672.

    Article  CAS  Google Scholar 

  88. Li Z, et al. Hollow nanomaterials in advanced drug delivery systems: from single-to multiple shells. Adv Mater. 2023;35(12):2203890.

    Article  CAS  Google Scholar 

  89. Scopel R, et al. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. Int J Polym Mater Polym Biomater. 2022;71(2):127–38.

    Article  CAS  Google Scholar 

  90. Khan NH, et al. Skin cancer biology and barriers to treatment: recent applications of polymeric micro/nanostructures. J Adv Res. 2022;36:223–47.

    Article  CAS  PubMed  Google Scholar 

  91. Ur Rahim J, et al. Synthesis and characterization of piperic acid conjugates with homochiral and heterochiral dipeptides containing phenylalanine and their application in skin cancer. Peptides. 2023;170:171113.

    Article  CAS  PubMed  Google Scholar 

  92. Duan C, et al. Overcoming cancer multi-drug resistance (MDR): reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother. 2023;162:114643.

    Article  CAS  PubMed  Google Scholar 

  93. Vera J, et al. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Brief Bioinform. 2022;23(6):bbac433.

    Article  PubMed  Google Scholar 

  94. Chiou W. Prevention of skin cancer: healthy sun exposure and no sunscreen for intense intermittent exposure; photoaging theories questioned and new strategies. J Dermatol Res. 2022;3(3):1–16.

    Google Scholar 

  95. Saleh MM, et al. Correlation of skin cancer and actinic keratosis-related knowledge and sun protection behaviors and sunscreen use among a sample of Jordanian population. J Cosmet Dermatol. 2022;21(12):7066–74.

    Article  PubMed  Google Scholar 

  96. Khan S, et al. Progress in nanotechnology-based targeted cancer treatment. In: Photophysics and nanophysics in therapeutics. Elsevier; 2022. p. 239–50.

    Chapter  Google Scholar 

  97. Kunnumakkara AB, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.

    Article  CAS  PubMed  Google Scholar 

  98. Jose A, Labala S, Venuganti VVK. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target. 2017;25(4):330–41.

    Article  CAS  PubMed  Google Scholar 

  99. Min K-J, Kwon TK. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res. 2014;3(1):16–24.

    Article  PubMed  Google Scholar 

  100. Nirmala JG, et al. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv. 2016;6(85):82205–18.

    Article  CAS  Google Scholar 

  101. Vickers NJ. Animal communication: when I’m calling you, will you answer too? Curr Biol. 2017;27(14):R713–5.

    Article  CAS  PubMed  Google Scholar 

  102. Wu S, et al. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif Cells Nanomed Biotechnol. 2020;48(1):1153–8.

    Article  CAS  PubMed  Google Scholar 

  103. Jangdey MS, et al. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. Artif Cells, Nanomed Biotechnol. 2017;45(7):1452–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. R.S. Gaud, Director, Pharma Section, SVKM’s NMIMS Deemed-to-be University, for providing excellent research facilities and deep encouragement whilst pursuing this project

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

AS: initiated and designed this study, contributed to data interpretation, and wrote the original manuscript. SB: collected the data, contributed to data interpretation, and drafted the manuscript and further supervised the study. All the authors have reviewed and approved the final manuscript.

Corresponding author

Correspondence to Sankha Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathe, A., Prajapati, B.G. & Bhattacharya, S. Understanding the charismatic potential of nanotechnology to treat skin carcinoma. Med Oncol 41, 22 (2024). https://doi.org/10.1007/s12032-023-02258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02258-5

Keywords

Navigation