Skip to main content
Log in

Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The polyamines spermine, spermidine and putrescine are ubiquitous cell components. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper-containing amine oxidases. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. In tumors, polyamines and amine oxidases are increased as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H2O2 and aldehydes produced by the reaction. This study demonstrated that multidrug-resistant (MDR) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding wild-type (WT) ones to H2O2 and aldehydes, the products of BSAO-catalyzed oxidation of spermine. Transmission electron microscopy (TEM) observations showed major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. Increasing the incubation temperature from 37 to 42°C enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumor growth, particularly well if the enzyme has been conjugated to a biocompatible hydrogel polymers. Since both wild-type and MDR cancer cells after pre-treatment with MDL 72527, a lysosomotropic compound, are sensitized to subsequent exposure to BSAO/spermine, it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells. It is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADR:

Adriamycin-resistant cells

ALDH:

Aldehyde dehydrogenase

AO:

Amine oxidase

APAO:

N1-Acetylpolyamine oxidase

BSAO:

Bovine serum amine oxidase

CHO:

Chinese hamster ovary

CuAO:

Copper amine oxidase

Cu/TPQ-AO:

Amine oxygen oxidoreductase copper-containing

DAO:

Diamine oxidase

DFMO:

Difluoromethylornithine

DX:

Doxorubicin-resistant cells

FAD:

Flavin adenine dinucleotide

hVAP-1:

Human vascular adhesion protein-1

LoVo:

Colon adenocarcinoma cell

LOX:

Lysyl oxidase

M14:

Melanoma cell

MAO:

Monoamine oxidase

MDL 72527:

N1,N4-bis(2,3-butadienyl)-1,4-butanediamine

MDR:

Multidrug-resistant

NSAIDS:

Non-steroidal anti-inflammatory drugs

PAO:

Polyamine oxidase

PEG:

Polyethylene glycol

P-gp:

P-glycoprotein

ROS:

Reactive oxygen species

SAO:

Serum amine oxidase

SH:

Thiol groups

SMO:

Spermine oxidase

SSAO:

Semicarbazide-sensitive amine oxidase

TEM:

Transmission electron microscopy

LTQ:

Lysine tyrosylquinone

TNFα:

Tumor-necrosis factor α

TPQ:

2,4,5-Trihydroxyphenylalaninequinone

VAP-1:

Vascular adhesion protein-1

WR 1065:

Aminothiol N-(2-mercaptoethyl)-1,3-propanediamine

WT:

Wild-type

References

  • Abell CW, Kwan SW (2001) Molecular characterization of monoamine oxidases A and B. Prog Nucleic Acid Res Mol Biol 65:129–156

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Seiler N (2006) Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids 31:341–355

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Seiler N (2007) Lysosomotropic compounds and spermine enzymatic oxidation products in cancer therapy (review). Int J Oncol 31:473–484

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Riccio P, Mucigrosso J, Befani O, Mondovì B (1988) On the handling of amine oxidase activity as a biochemical tool: perspectives. In: Perin A, Scalabrino G, Sessa A, Ferioli ME (eds) Perspectives in polyamine research. Wichtig Editor, Milan, pp 17–19

    Google Scholar 

  • Agostinelli E, Morpurgo L, Wang C, Giartosio A, Mondovì B (1994a) Properties of cobalt-substituted bovine serum amine oxidase. Eur J Biochem 222:727–732

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Przybytkowski E, Mondovì B, Averill-Bates DA (1994b) Heat enhancement of cytotoxicity induced by oxidation product of spermine in Chinese hamster ovary cells. Biochem Pharmacol 48:1181–1186

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Arancia G, Calcabrini A, Matarrese P, Mondovì B, Pietrangeli P (1995) Hyperthermia-induced biochemical and ultrastructural modifications in cultured cells. Exp Oncol 17:269–276

    Google Scholar 

  • Agostinelli E, Przybytkowski E, Averill-Bates DA (1996) Glucose, glutathione, and cellular response to spermine oxidation products. Free Rad Biol Med 20:649–656

    CAS  PubMed  Google Scholar 

  • Agostinelli E, De Mattheis G, Sinibaldi A, Mondovì B, Morpurgo L (1997) Reactions of the oxidized organic cofactor in copper-depleted bovine serum amine oxidase. Biochem J 324:497–501

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications. Amino Acids 27:347–358

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Belli F, Dalla Vedova L, Longu S, Mura A, Floris G (2005) Catalytic properties and role of copper in bovine and lentil seedling copper/quinone-containing amine oxidases: controversial opinions. Eur J Inorg Chem 9:1635–1641

    Google Scholar 

  • Agostinelli E, Belli F, Molinari A, Condello M, Palmigiani P, Dalla Vedova L, Marra M, Seiler N, Arancia G (2006a) Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): sensitisation by heat and MDL 72527. Biochim Biophys Acta 1763:1040–1050

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Belli F, Dalla Vedova L, Marra M, Crateri P, Arancia G (2006b) Hyperthermia enhances cytotoxicity of amine oxidase and spermine on drug-resistant LoVo colon adenocarcinoma cells. Int J Oncol 28:1543–1553

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Dalla Vedova L, Belli F, Condello M, Arancia G, Seiler N (2006c) Sensitization of human colon adenocarcinoma cells (LoVo) to reactive oxygen species by a lysosomotropic compound. Int J Oncol 29:947–955

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Molinari A, Salvi M, Battaglia V, Toninello A, Arancia G (2007a) The physiological role of biogenic amines redox reactions in mitochondria. New perspective in cancer therapy. Amino Acids 33:175–187

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Dalla Vedova L, Condello M, Arancia G (2007b) MDL 72527 and spermine oxidation products induce a lysosomotropic effect and mitochondrial alterations in tumour effect. Biochem Soc Trans 35:343–348

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Tandurella E, Pintus F, Spanò D, Medda R, Floris G (2009a) The role of copper amine oxidases in the metabolism of polyamine and their therapeutic implications. In: Dandrifosse G (ed) Biological aspects of biogenic amines, polyamines and conjugates, ISBN: 978-81-7895-249-9, Transworld Research Network, pp 33–49

  • Agostinelli E, Condello M, Molinari A, Tempera G, Viceconte N, Arancia G (2009b) Cytotoxicity of spermine oxidation products to multidrug resistant melanoma M14 ADR2 cells: sensitization by MDL 72527 lysosomotropic compound. Int J Oncol 35:485–498

    CAS  PubMed  Google Scholar 

  • Airenne TT, Nymalm Y, Kidron H, Smith DJ, Pihlavisto M, Salmi M, Jalkanen S, Johnson MS, Salminen TA (2005) Crystal structure of the human vascular adhesion structural features with functional implications. Protein Sci 14:1964–1974

    CAS  PubMed  Google Scholar 

  • Alarcon RA (1970) Acrolein IV. Evidence for the formation of the cytotoxic aldehyde acrolein from enzymatically oxidized spermine or spermidine. Arch Biochem Biophys 137:365–372

    CAS  PubMed  Google Scholar 

  • Andreyev A, Fiskum G (1999) Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ 6:825–832

    CAS  PubMed  Google Scholar 

  • Arancia G, Calcabrini A, Meschini S, Molinari A (1998) Intracellular distribution of anthracyclines in drug resistant cells. Cytotechnology 27:95–111

    CAS  PubMed  Google Scholar 

  • Arancia G, Calcabrini A, Marra M, Crateri P, Artico M, Martone A, Martelli F, Agostinelli E (2004) Mitochondrial alterations induced by serum amine oxidase and spermine on human multidrug resistant tumor cells. Amino Acids 26:273–282

    CAS  PubMed  Google Scholar 

  • Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KSK, Csiszar K, Yamauchi M (2008) Lysyl oxidase binds transforming growth factor-β and regulates its signaling via amine oxidase activity. J Biol Chem 283:34229–34240

    CAS  PubMed  Google Scholar 

  • Averill-Bates DA, Agostinelli E, Przybytkowski E, Mateescu MA, Mondovì B (1993) Cytotoxicity and kinetic analysis of purified bovine serum amine oxidase in the presence of spermine in Chinese hamster ovary cells. Arch Biochem Biophys 300:75–79

    CAS  PubMed  Google Scholar 

  • Averill-Bates DA, Cherif A, Agostinelli E, Tanel A, Fortier G (2005) Anti-tumoral effect of native and immobilized bovine serum amine oxidase in a mouse melanoma model. Biochem Pharmacol 69:1693–1704

    CAS  PubMed  Google Scholar 

  • Averill-Bates DA, Ke Q, Tanel A, Roy J, Fortier G, Agostinelli E (2008) Mechanism of cell death induced by spermine and amine oxidase in mouse melanoma cells. Int J Oncol 32:79–88

    CAS  PubMed  Google Scholar 

  • Babbar N, Casero RA Jr (2006) Tumor necrosis factor α increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation induced carcinogenesis. Cancer Res 66:11125–11130

    CAS  PubMed  Google Scholar 

  • Bachrach U, Ash I, Abu-Elheiga L, Hershkovitz M, Loyter A (1987) Fusion-mediated microinjection of active amine and diamine oxidases into cultured cells: effect on protein and DNA synthesis in chick embryo fibroblasts and in glioma cells. J Cell Physiol 131:92–98

    CAS  PubMed  Google Scholar 

  • Bachrach U, Wang YC, Tabib A (2001) Polyamines: new cues in cellular signal transduction. News Physiol Sci 16:106–109

    CAS  PubMed  Google Scholar 

  • Bates DA, Mackillop WJ (1990) The effect of hyperthermia in combination with melphalan on drug-sensitive and drug-resistant CHO cells in vitro. Br J Cancer 62:183–188

    CAS  PubMed  Google Scholar 

  • Bellelli A, Morpurgo L, Mondovi’ B, Agostinelli E (2000) On the oxidation and reduction reactions of bovine serum amine oxidase: a kinetic study. Eur J Biochem 267:3264–3269

    CAS  PubMed  Google Scholar 

  • Ben-Hur E, Prager A, Riklis E (1978) Enhancement of thermal killing by polyamines. Survival of Chinese hamster cells. Int J Cancer 22:602–606

    CAS  PubMed  Google Scholar 

  • Bey P, Bolkenius FN, Seiler N, Casara P (1985) N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J Med Chem 28:1–2

    CAS  PubMed  Google Scholar 

  • Bianchi P, Kunduzova O, Masini E, Cambon C, Bani D, Raimondi L, Seguelas MH, Nistri S, Colucci W, Leducq N, Parini A (2005) Oxidative stress by mono amine oxidase mediates receptor-independent cardiomyocite apoptosis by serotonin and postischemic myocardial injury. Circulation 112:3297–3305

    CAS  PubMed  Google Scholar 

  • Binda C, Mattevi A, Edmondson DL (2002) Structure–function relationships in flavoenzyme-dependent amine oxidations. J Biol Chem 277:23973–23976

    CAS  PubMed  Google Scholar 

  • Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DL, Mattevi A (2007) Structures of human monoamine oxidase B complexes with selective non covalent inhibitors: safinamide and coumarin analogs. J Med Chem 50:5848–5852

    CAS  PubMed  Google Scholar 

  • Boor P, Unzeta M, Salmi M, Jalkanen S (2009) Copper amine oxidases in adhesion molecules in renal pathology and in Alzheimer’s disease and VAP-1 in leukocyte migration. In: Floris G, Mondovì B (eds) Copper amine oxidases. CRC press, Boca Raton, pp 195–217

    Google Scholar 

  • Calcabrini A, Arancia G, Marra M, Crateri P, Befani O, Martone A, Agostinelli E (2002) Enzymatic oxidation products of spermine induce greater cytotoxic effects on human multidrug- resistant colon carcinoma cells (LoVo) than on their wild type counterparts. Int J Cancer 99:43–52

    CAS  PubMed  Google Scholar 

  • Calderone V, Di Paolo ML, Trabucco M, Biadene M, Battistutta R, Rigo A, Zanotti G (2003) Crystallization and preliminary X-ray data of amine oxidase from bovine serum. Acta Crystallogr D Biol Crystallogr 59:727–729

    PubMed  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    CAS  PubMed  Google Scholar 

  • Casero RA Jr, Pegg A (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    CAS  PubMed  Google Scholar 

  • Checkoway H, Franklin GM, Costa-Mallen P, Smith-Weller T, Dilley J, Swansons PD, Costa LG (1998) A genetic polymorphism of MAO-B modifies the association of cigarette smoking and Parkinson’s disease. Neurology 50:1458–1461

    CAS  PubMed  Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    CAS  PubMed  Google Scholar 

  • Cohen SS (ed) (1998) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  • Dai H, Kramer DL, Yanag C, Murti KG, Porter CW, Cleveland JL (1999) The polyamine oxidase inhibitor MDL 72527 selectively induces apoptosis of transformed haematopoietic cells through lysosomotropic effects. Cancer Res 59:4944–4955

    CAS  PubMed  Google Scholar 

  • De Biase D, Agostinelli E, De Matteis G, Mondovì B, Morpurgo L (1996) Half-of-the-sites reactivity of bovine serum amine oxidase. Reactivity and chemical identity of the second site. Eur J Biochem 237:93–99

    PubMed  Google Scholar 

  • Demers N, Agostinelli E, Averill-Bates DA, Fortier G (2001) Immobilization of native and polyethyleneglycol-treated (“PEGylated”) bovine serum amine oxidase into a biocompatible hydrogel. Biotechnol Appl Biochem 33:201–207

    CAS  PubMed  Google Scholar 

  • Dini L, Agostinelli E, Mondovi B (1991) Cultured hepatocytes bind and internalize bovine serum amine oxidase–gold complex. Biochem Biophys Res Commun 179:1169–1174

    CAS  PubMed  Google Scholar 

  • Duff AP, Cohen AE, Ellis PJ, Kuchar JA, Langley DB, Shepard EM, Dooley DM, Freeman HC, Guss JM (2003) The crystal structure of Pichia pastoris lysyl oxidase. Biochemistry 42:15148–15157

    CAS  PubMed  Google Scholar 

  • Edmondson DL, Binda C, Mattevi A (2007) Structural insights into the mechanism of amine oxidation by monoamine oxidase A and B. Arch Biochem Biophys 464:269–276

    CAS  PubMed  Google Scholar 

  • Edmondson DL, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48:4220–4230

    CAS  PubMed  Google Scholar 

  • Floris G, Mondovì B (2009) Copper amine oxidases. CRC Press, Boca Ranton

    Google Scholar 

  • Gahl WA, Pitot HC (1982a) Polyamine degradation in foetal and adult bovine serum. Biochem J 202:603–611

    CAS  PubMed  Google Scholar 

  • Gahl WA, Vale AM, Pitot HC (1982b) Spermidine oxidase in human pregnancy serum. Biochem J 201:161–166

    CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2009) Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res 15:758–761

    CAS  PubMed  Google Scholar 

  • Gerner EW, Holmes DK, Stickney DG, Noterman JA, Fuller DJ (1980) Enhancement of hyperthermia induced cytotoxicity by polyamines. Cancer Res 40:432–438

    CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr, Goldschmid S, Lance P, Pelot D (2007) Rationale for, and design of, a clinical trial targeting polyamine metabolism for colon cancer chemoprevention. Amino Acids 33:189–195

    CAS  PubMed  Google Scholar 

  • Gervasoni JE Jr, Fields SZ, Krishna S, Baker MA, Rosado M, Thuraisamy K, Hinderburg AA, Taub RN (1991) Subcellular distribution of doxorubicin in P-glycoprotein-positive and -negative drug resistant cell lines using laser-assisted confocal microscopy. Cancer Res 51:4955–4963

    CAS  PubMed  Google Scholar 

  • Ghafourifar P, Klein SD, Schucht O, Schenk U, Pruschy M, Rocha S, Richter C (1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 274:6080–6084

    CAS  PubMed  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    CAS  PubMed  Google Scholar 

  • Green EL, Nakamura N, Dooley DM, Klinman JP, Sanders-Loehr J (2002) Rates of oxygen and hydrogen exchange as indicators of TPQ cofactor orientation in amine oxidases. Biochemistry 41:687–696

    CAS  PubMed  Google Scholar 

  • Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    CAS  PubMed  Google Scholar 

  • Hahn GM (1982) Plenum Press, New York

  • Hartmann C, Klinman JP (1991) Structure–function studies of substrate oxidation by bovine serum amine oxidase: relationship to cofactor structure and mechanism. Biochemistry 30:4605–4611

    CAS  PubMed  Google Scholar 

  • Heby O, Persson L (1990) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci 15:153–158

    CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    CAS  PubMed  Google Scholar 

  • Henle KJ, Moss AJ, Nagle WA (1986) Mechanism of spermidine cytotoxicity at 37 degrees C and 43 degrees C in Chinese hamster ovary cells. Cancer Res 46:175–182

    CAS  PubMed  Google Scholar 

  • Houen G (1999) Mammalian Cu-containing amine oxidases (CAOs). New methods of analysis, structural relationships, and possible functions. Acta Pathol Microbiol Immunol Scand 107:5–46

    Google Scholar 

  • Israel M, Zoll EC, Muhammad N, Modest EJ (1973) Synthesis and antitumor evaluation of the presumed cytotoxic metabolites of spermine and N,N-bis (3-aminopropyl)nonane-1,9-diamine. J Med Chem 16:1–5

    CAS  PubMed  Google Scholar 

  • Issels R (1999) Hyperthermia combined with chemotherapy—biological rationale, clinical application, and treatment results. Onkologie 22:374–381

    Google Scholar 

  • Janes SM, Klinman JP (1991) An investigation of bovine serum amine oxidase active site stoichiometry: evidence for an aminotransferase mechanism involving two carbonyl cofactors per enzyme dimer. Biochemistry 30:4599–4605

    CAS  PubMed  Google Scholar 

  • Janes SM, Mu D, Wemmer D, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinman JP (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248:981–987

    CAS  PubMed  Google Scholar 

  • Kumar V, Dooley DM, Freeman HC, Guss JM, Harvej J, McGuirl MA, Wilce MC, Zubak V (1996) Crystal structure of the eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure 4:943–955

    CAS  PubMed  Google Scholar 

  • La Regina G, Silvestri R, Artico M, Lavecchia A, Novellino E, Befani O, Turini P, Agostinelli E (2007) New pyrrole inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. J Med Chem 50:922–931

    CAS  PubMed  Google Scholar 

  • Lee Y, Sayre LM (1998) Reaffirmation that metabolism of polyamines by bovine plasma amine oxidase occurs strictly at the primary amino termini. J Biol Chem 273:19490–19494

    CAS  PubMed  Google Scholar 

  • Li R, Klinman JP, Mathews FS (1998) Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 A resolution reveals the active conformation. Structure 6:293–307

    CAS  PubMed  Google Scholar 

  • Lindsay GS, Wallace HM (1999) Changes in polyamine catabolism in HL-60 human promyelogenous leukaemic cells in response to etoposide-induced apoptosis. Biochem J 337:83–87

    CAS  PubMed  Google Scholar 

  • Lord-Fontaine S, Agostinelli E, Przybytkowski E, Averill-Bates DA (2001) Amine oxidase, spermine, and hyperthermia induce cytotoxicity in P-glycoprotein overexpressing multidrug resistant Chinese hamster ovary cells. Biochem Cell Biol 79:165–175

    CAS  PubMed  Google Scholar 

  • Lucero HA, Ravid K, Grimsby JL, Rich CB, DiCamillo SJ, Maki JM, Myllyharju J, Kagan HM (2008) Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. J Biol Chem 283:24103–24117

    CAS  PubMed  Google Scholar 

  • Lunelli M, Di Paolo ML, Biadene M, Calderone V, Battistutta R, Scarpa M, Rigo A, Zanotti G (2005) Crystal structure of amine oxidase from bovine serum. J Mol Biol 346:991–1004

    CAS  PubMed  Google Scholar 

  • Lyles GA (1996) Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol 28:259–274

    CAS  PubMed  Google Scholar 

  • Mallajosyula JK, Kaur D, Chinta SJ, Rajagopalan S, Rane A, Nicholls DG, Di Monte DA, Macarthur H, Andersen JK (2008) MAO B elevation in mouse brain astrocytes results in Parkinson’s pathology. PlosOne 3:e-1616

  • Malorni W, Giammarioli AM, Matarrese P, Pietrangeli P, Agostinelli E, Ciaccio A, Grassilli E, Mondovì B (1998) Protection against apoptosis by monoamine oxidase A inhibitors. FEBS Lett 426:155–159

    CAS  PubMed  Google Scholar 

  • Marti L, Abella A, De La Cruz X, Garcìa-Vicente S, Unzeta M, Carpènè C, Palacìn M, Testar X, Orozco M, Zorzano A (2004) Exploring the binding mode of semicarbazide-sensitive amine oxidase/VAP-1: identification of novel substrates with insulin-like activity. J Med Chem 47:4865–4874

    CAS  PubMed  Google Scholar 

  • Mc Laren CE, Fujikawa-Brooks S, Chen WP, Gilen DL, Pelot D, Gerner EW, Meyskens FL Jr (2008) Longitudinal assessment of air conduction audiograms in a phase III clinical trials of difluoromethylornithine and sulindac for prevention of sporadic colorectal adenomas. Cancer Prev Res (Phila Pa) 1:499–502

    Google Scholar 

  • Mitchell Guss J, Zanotti G, Salminen TA (2009) Copper amine oxidases crystal structures. In: Floris G, Mondovì B (eds) Copper amine oxidases. CRC press, Boca Raton, pp 119–142

    Google Scholar 

  • Mondovì B, Riccio P, Agostinelli E, Marcozzi G (1989) Oxidation of diamines and polyamines. In: Bachrach U, Heimer YM (eds) The physiology of polyamines, vol 1. CRC Press, Boca Raton, pp 177–201

    Google Scholar 

  • Morgan DML (1988) Polyamine oxidases and oxidized polyamines. In: Bachrach U, Heimer Y (eds) The physiology of polyamines, vol 1. CRC Press, Boca Raton, pp 203–229

    Google Scholar 

  • Morpurgo L, Agostinelli E, Mondovì B, Avigliano L, Silvestri R, Stefancich G, Artico M (1992) Bovine serum amine oxidase: half-site reactivity with phenylhydrazine, semicarbazide, and aromatic hydrazides. Biochemistry 31:2615–2621

    CAS  PubMed  Google Scholar 

  • Mu D, Janes SM, Smith AJ, Brown DE, Dooley DM, Klinman JP (1992) Tyrosine codon corresponds to topaquinone at the active site of copper amine oxidases. J Biol Chem 267:7979–7982

    CAS  PubMed  Google Scholar 

  • Nagele A, Meier T, Issels RD (1990) Thermosensitization, depletion of glutathione, and modulation of polyamine catabolism in CHO cells by the aminothiol WR-1065. Prog Pharm Clin Pharm 8:176–180

    Google Scholar 

  • Nakamura N, Möenne-Loccoz P, Tanizawa K, Mure M, Suzuki S, Klinman JP, Sanders-Loehr J (1997) Topaquinone-dependent amine oxidases: identification of reaction intermediates by Raman spectroscopy. Biochemistry 36:11479–11486

    CAS  PubMed  Google Scholar 

  • Nayvelt I, Thomas T, Thomas TJ (2007) Mechanistic differences in DNA nanoparticle formation in the presence of oligolysines and poly-l-lysine. Biomacromolecules 8:477–484

    CAS  PubMed  Google Scholar 

  • Nymalm Y, Kidron H, Söderholm A, Viitanen L, Kaukonen K, Pihlavisto M, Smith D, Veromaa T, Airenne TT, Johnson MS, Salminen TA (2003) Crystallization and preliminary X-ray analysis of the human vascular adhesion protein-1. Acta Crystallogr D Biol Crystallogr 59:1288–1290

    PubMed  Google Scholar 

  • O’Sullivan J, Unzeta M, Healy J, O’Sullivan MI, Davey G, Tipton KF (2004) Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. NeuroToxicology 25:303–315

    PubMed  Google Scholar 

  • Parsons MR, Convery MA, Wilmore CM, Yadav KD, Blakeley V, Corner AS, Phillips SE, McPherson MJ, Knowles PF (1995) Crystal structure of a quinonenzyme copper amine oxidase of Escherichia coli at 2 Å resolution. Structure 3:1171–1184

    CAS  PubMed  Google Scholar 

  • Paterson LA, Tatton WG (1998) Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol 42:312–315

    CAS  PubMed  Google Scholar 

  • Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48:759–774

    CAS  PubMed  Google Scholar 

  • Salmi M, Jalkanen S (2006) Development regulation of the adhesive and enzymatic activity of vascular adhesion protein (VAP-1) in humans. Blood 108:1555–1561

    CAS  PubMed  Google Scholar 

  • Salminen TA, Smith DJ, Jalkanen S, Johnson MS (1998) Structural model of the catalytic domain of an enzyme with cell adhesion activity: human vascular adhesion protein-1 (HVAP-1) D4 domain is an amine oxidase. Protein Eng 11:1195–1204

    CAS  PubMed  Google Scholar 

  • Seiler N (1992) Polyamine catabolism and elimination by the vertebrate organism. In: Dowling RH, Fölsch UR, Löser G (eds) Polyamines in the gastrointestinal tract. Kluwer Academic Publishers, Dordrecht, pp 65–85

    Google Scholar 

  • Seiler N (1994) Formation, catabolism and properties of the natural polyamines. In: Carter C (ed) The neuropharmacology of polyamines. Academic Press, London, pp 1–36

    Google Scholar 

  • Seiler N (2000) Oxidation of polyamines and brain injury. Neurochem Res 25:471–490

    CAS  PubMed  Google Scholar 

  • Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    CAS  PubMed  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642

    CAS  PubMed  Google Scholar 

  • Seiler N, Duranton B, Raul F (2002) The polyamine oxidase inactivator MDL 72527. Prog Drug Res 59:1–40

    CAS  PubMed  Google Scholar 

  • Sharmin S, Sakata K, Kashiwagi K, Ueda S, Iwasaki S, Shirahata A, Igarashi K (2001) Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem Biophys Res Commun 282:228–235

    CAS  PubMed  Google Scholar 

  • Simoneau AR, Gerner EW, Nagle R, Ziogas A, Fujikawa-Brooks S, Yerushalmi H, Ahlering TE, Lieberman R, McLaren CE, Anton-Culver H, Meyskens FL Jr (2008) The effect of difluoromethylornithine on decreasing prostate size and polyamines in men: results of a year-long phase II b randomized placebo-controlled chemoprevention trial. Cancer Epidemiol Biomarkers Prev 17:292–299

    CAS  PubMed  Google Scholar 

  • Stefanelli C, Bonavita F, Stanic’ I, Mignani M, Facchini A, Pignatti C, Flamigni F, Caldarera CM (1998) Spermine causes caspase activation in leukaemia cells. FEBS Lett 437:233–236

    CAS  PubMed  Google Scholar 

  • Stefanelli C, Bonavita F, Stanic’ I, Pignatti C, Flamigni F, Guarnieri C, Caldarera CM (1999) Spermine triggers the activation of caspase-3 in a cell-free model of apoptosis. FEBS Lett 451:95–98

    CAS  PubMed  Google Scholar 

  • Stefanelli C, Stanic’ I, Zini M, Bonavita F, Flamigni F, Zambonin L, Landi L, Pignatti C, Guarnieri C, Caldarera CM (2000) Polyamines directly induce release of cytochrome c from heart mitochondria. J Biochem 347:875–880

    CAS  Google Scholar 

  • Stolen CM, Yegutkin GG, Kurkijarvi R, Bono P, Alitalo K, Jalkanen S (2004) Origins of serum semicarbazide-sensitive amine oxidase. Circ Res 95:50–57

    CAS  PubMed  Google Scholar 

  • Strolin Benedetti M, Tipton KF, Whomsley R, Baltes E (2007) Factors affecting the relative importance of amine oxidases and monooxygenases in the in vivo metabolism of xenobiotic amines in humans. J Neural Transm 114:787–791

    CAS  PubMed  Google Scholar 

  • Su Q, Klinman JP (1998) Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Biochemistry 37:12513–12525

    CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    CAS  PubMed  Google Scholar 

  • Tabor H, Tabor CW, Bachrach U (1964) Identification of the amino aldehydes produced by the oxidation of spermine and spermidine in purified plasma amine oxidase. J Biol Chem 239:2194–2203

    CAS  PubMed  Google Scholar 

  • Tipton KF, O’Sullivan MI, Davey GP, O’Sullivan JO (2003) It can be a complicated life being an enzyme. Biochem Soc Trans 31:711–715

    CAS  PubMed  Google Scholar 

  • Tipton KF, Boyce S, O’Sullivan J, Davey GP, Healy J (2004) Monoamine oxidases: certainties and uncertainties. Curr Med Chem 11:1965–1982

    CAS  PubMed  Google Scholar 

  • Tobias KE, Kahana C (1995) Exposure to ornithine results in excessive accumulation of putrescine and apoptotic cell death in ornithine decarboxylase overproducing mouse myeloma cells. Cell Growth Differ 6:1279–1285

    CAS  PubMed  Google Scholar 

  • Toninello A, Salvi M, Mondovì B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11:2349–2374

    CAS  PubMed  Google Scholar 

  • Turini P, Sabatini S, Befani O, Chimenti F, Casanova C, Riccio P, Mondovì B (1982) Purification of bovine plasma amine oxidase. Anal Biochem 125:294–298

    CAS  PubMed  Google Scholar 

  • Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15:79–107

    CAS  PubMed  Google Scholar 

  • Vujcic S, Diegelman P, Bacchi CJ, Kramer DL, Porter CW (2002) Identification and characterization of a novel flavin containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675

    CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV (2003) Polyamines analogues as anticancer drugs. Biochem Soc Trans 31:393–396

    CAS  PubMed  Google Scholar 

  • Wallace HM, Niiranen K (2007) Polyamine analogues—an update. AminoAcids 33:261–265

    CAS  Google Scholar 

  • Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr (2001) Cloning and characterization of human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373

    CAS  PubMed  Google Scholar 

  • Wilce MCJ, Dooley DM, Freeman HC, Guss JM, Matsunami H, McIntire WS, Ruggiero CE, Tanizawa K, Yamaguchi H (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36:16116–16133

    CAS  PubMed  Google Scholar 

  • Yegutkin GG, Salminen T, Koskinen K, Kurtis C, McPherson MJ, Jalkanen S, Salmi M (2004) A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol 34:2276–2285

    CAS  PubMed  Google Scholar 

  • Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D (2003) Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta 1647:193–199

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) and by funds MIUR-PRIN (Cofin). Thanks to ‘Fondazione Sovena’ for the scholarship given to Nikenza Viceconte for supporting her Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Agostinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostinelli, E., Tempera, G., Viceconte, N. et al. Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38, 353–368 (2010). https://doi.org/10.1007/s00726-009-0431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0431-8

Keywords

Navigation