Skip to main content
Log in

Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

The use of biochar as a means of mitigating climate change and improving soil physical and chemical characteristics has been extensively studied over the last two decades. However, the effects of biochar on the soil microbiota and plant diseases, especially those caused by soilborne plant pathogens, have received little attention and are poorly understood. The objectives of this study were to evaluate the effects of biochar at different concentrations incorporated into two soils on the control of Fusarium wilt, tomato development and soil microbial activity. The severity of Fusarium wilt and microbial activities (microbial biomass nitrogen and alkaline phosphatase) were inversely proportional to the concentrations (0 to 5%, v/v) of biochar incorporated into the soil. The fresh root and dry shoot masses and stem diameter measures increased with the increase in biochar concentration. Biochar aqueous extract did not affect Fusarium mycelial growth, but microconidial germination was reduced with the increase in the concentration of biochar aqueous extract. The biochar used in the present study has the potential to increase soil microbial biomass, promote plant growth and reduce the severity of tomato Fusarium wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASTM (2013) American Society for Testing Materials ASTM D1762-84: standard test method for chemical analyses of wood charcoal. Available online at https://www.astm.org/Standards/D1762.htm

  • Bailey VL, Fansler SJ, Smith JL, Bolton H Jr (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry 43:296–301

    Article  CAS  Google Scholar 

  • Bataglia O, Teixeira J, Furlani P, Furlani A, Gallo J (1983) Métodos de análise química de plantas. Intituto Agronômico de Campinas, Campinas

    Google Scholar 

  • Berglund L, Deluca T, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in scots pine forests. Soil Biology and Biochemistry 36:2067–2073

    Article  CAS  Google Scholar 

  • Bikbulatova S, Tahmasebi A, Zhang Z, Rish SK, Yu J (2018) Understanding water retention behavior and mechanism in bio-char. Fuel Processing Technology 169:101–111

    Article  CAS  Google Scholar 

  • BRASIL (2017) Ministério de Minas e Energia. Balanço Energético Nacional 2017: ano base 2016. EPE, Rio de Janeiro

    Google Scholar 

  • Breazeale J (1906) Effect of certain solids upon the growth of seedlings in water cultures. Botanical Gazette 41:54–63

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Agronomic values of greenwaste biochar as a soil amendment. Soil Research 45:629–634

    Article  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D-S (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proceedings of the National Academy of Sciences 92:4197–4201

    Article  CAS  Google Scholar 

  • Dempster D, Gleeson D, Solaiman ZI, Jones D, Murphy D (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil 354:311–324

    Article  CAS  Google Scholar 

  • Ding Y, Liu Y-X, Wu W-X, Shi D-Z, Yang M, Zhong Z-K (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, & Soil Pollution 213:47–55

    Article  CAS  Google Scholar 

  • Dispenza V, De Pasquale C, Fascella G, Mammano M, Alonzo G (2016) Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants. Spanish Journal of Agricultural Research 14:1–11

    Article  Google Scholar 

  • Du Z, Wang Y, Huang J, Lu N, Liu X, Lou Y, Zhang Q (2014) Consecutive biochar application alters soil enzyme activities in the winter wheat–growing season. Soil Science 179:75–83

    Article  CAS  Google Scholar 

  • Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease 95:960–966

    Article  PubMed  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039–1042

    Article  Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transaction of the American Society of Agricultural and Biological Engineers 51:2061–2069

    Google Scholar 

  • Ghini R, Mendes M, Bettiol W (1998) Método de hidrólise de diacetato de fluoresceina (FDA) como indicador da atividade microbiana do solo e supressividade a Rhizoctonia solani. Summa Phytopathologica 24:239–242

    CAS  Google Scholar 

  • Gordon TR (2017) Fusarium oxysporum and the Fusarium wilt syndrome. Annual Review of Phytopathology 55:23–39

    Article  CAS  PubMed  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil 337:481–496

    Article  CAS  Google Scholar 

  • Grossman JM, O'Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodifield soils the same mineralogy. Microbial Ecology 60:192–205

    Article  CAS  PubMed  Google Scholar 

  • He L, Zhong Z, Yang H (2016) Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. Journal of Integrative Agriculture 15:704–712

    Google Scholar 

  • Heck DW, Ghini R, Bettiol W (2019) Deciphering the suppressiveness of banana Fusarium wilt with organic residues. Applied Soil Ecology 138:47–60

    Article  Google Scholar 

  • Hoitink HA, Fahy PC (1986) Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology 24:93–114

    Article  Google Scholar 

  • IBI – International Biochar Initiative (2015) Standardized product definition and product testing guidelines for biochar that is used in soil (aka IBI Biochar Standards) Version 2.1, 2015. Available online at https://biochar-international.org/characterizationstandard/

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry 69:110–118

    Article  CAS  Google Scholar 

  • Jaiswal AK, Frenkel O, Elad Y, Lew B, Graber ER (2015) Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the “shifted R max-effect”. Plant and Soil 395:125–140

    Article  CAS  Google Scholar 

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University. Ithaca, NY, USA

  • Jones JP (1991) Fusarium wilt. In: Jones JB, Jones JP, Stall RE, Zitter TA (eds) Compendium of tomato diseases. APS Press, St. Paul, p 15

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils 6:68–72

    Article  CAS  Google Scholar 

  • Kim JS, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry 39:684–690

    Article  CAS  Google Scholar 

  • Kulmatiski A (2011) Changing soils to manage plant communities: activated carbon as a restoration tool in ex-arable fields. Restoration Ecology 19:102–110

    Article  Google Scholar 

  • Kulmatiski A, Beard KH (2006) Activated carbon as a restoration tool: potential for control of invasive plants in abandoned agricultural fields. Restoration Ecology 14:251–257

    Article  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100:178–181

    Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lazarovits G, Conn K, Abbasi P, Tenuta M (2005) Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae 698:215–224

    Article  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5:381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London & Sterling, pp 1–9

    Google Scholar 

  • Lehmann J, Da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biology and Biochemistry 43:1812–1836

    Article  CAS  Google Scholar 

  • Li Q, Lei Z, Song X, Zhang Z, Ying Y, Peng C (2018) Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition. Environmental Research Letters 13:044029

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad J, Thies J, Luizao F, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70:1719–1730

    Article  CAS  Google Scholar 

  • Makoto K, Tamai Y, Kim Y, Koike T (2010) Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant and Soil 327:143–152

    Article  CAS  Google Scholar 

  • Nair RP (2014) Grand challenges in agroecology and land use systems. Frontiers in Environmental Science 2:1

    Google Scholar 

  • Nash SM, Snyder WC (1962) Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567–572

    Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MA (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174:105–112

    Article  CAS  Google Scholar 

  • O’Neill B, Grossman J, Tsai M, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology 58:23–35

    Article  PubMed  Google Scholar 

  • Obia A, Mulder J, Hale SE, Nurida NL, Cornelissen G (2018) The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS One 13:e0196794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radicis lycopersici in tomato. Biological Control 67:284–291

    Article  CAS  Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2011) Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biology and Biochemistry 43:2243–2246

    Article  CAS  Google Scholar 

  • Raij BV, Cantarella H, Quaggio JA, Furlani AM (Eds) (1996) Recomendação de adubação e calagem para o estado de São Paulo. Boletim Técnico IAC n. 100. Campinas, SP. IAC

  • Reis A, Boiteux LS (2007) Outbreak of Fusarium oxysporum f. sp. lycopersici race 3 in commercial fresh-market tomato fields in Rio de Janeiro State, Brazil. Horticultura Brasileira 25:451–454

    Article  Google Scholar 

  • Reis A, Costa H, Boiteux LS, Lopes CA (2005) First report of Fusarium oxysporum f. sp. lycopersici race 3 on tomato in Brazil. Fitopatologia Brasileira 30:426–428

    Article  Google Scholar 

  • Scharfy D, Boccali N, Stucki M (2017) Clean technologies in agriculture—how to prioritise measures? Sustainability 9:1303

    Article  Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Article  CAS  Google Scholar 

  • Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proceedings of the Nutrition Society. 72:21–28

    Article  PubMed  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Sparks DL (ed) Advances in agronomy, vol 105. Academic Press, Burllington, pp 47–82

    Google Scholar 

  • Steiner C, Glaser B, Geraldis-Teixeira W, Lehmann J, Blum WE, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science 171:893–899

    Article  CAS  Google Scholar 

  • Tabatabai M, Bremner J (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1:301–307

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Universidade Federal Rio Grande do Sul, Porto Alegre p. 174

  • Tokeshi H, Galli F (1966) Variabilidade de Fusarium oxysporum f. sp. lycopersici (Wr) Sny & Hans em São Paulo. Anais da Escola Superior de Agricultura Luiz de Queiroz 23:195–209

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327:235–246

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19:703–707

    Article  CAS  Google Scholar 

  • Wang D, Fonte SJ, Parikh SJ, Six J, Scow KM (2017) Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil 300:9–20

    Article  CAS  Google Scholar 

  • Windstam S, Nelson EB (2008) Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Applied and Environmental Microbiology 74:4292–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf D (2008) Biochar as a soil amendment: a review of the environmental implications. Swansea University. School of the Environment and Society

  • Zackrisson O, Nilsson M-C, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos:10–19

  • Zhang QZ, Dijkstra FA, Liu XR, Wang YD, Huang J, Lu N (2014) Effects of biochar on soil microbial biomass after four years of consecutive application in the North China plain. PLoS One 9:e102062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zwart DC, Kim S-H (2012) Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. HortScience 47:1736–1740

    Article  Google Scholar 

Download references

Acknowledgments

Wagner Bettiol (CNPq 303899/2015-8) acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the productivity fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Bettiol.

Additional information

Section Editor: Monica Höfte

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.G., de Andrade, C.A. & Bettiol, W. Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato. Trop. plant pathol. 45, 73–83 (2020). https://doi.org/10.1007/s40858-020-00332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00332-1

Keywords

Navigation