Dabelea, D., Mayer-Davis, E. J., Saydah, S., Imperatore, G., Linder, B., Divers, J., Bell, R., Badaru, A., Talton, J. W., Crume, T., Liese, A. D., Merchant, A. T., Lawrence, J. M., Reynolds, K., Dolan, L., Liu, L. L., Hamman, R. F., SEARCH for Diabetes in Youth Study. (2014). Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA, 311, 1778–1786. https://doi.org/10.1001/jama.2014.3201
CAS
Article
PubMed
PubMed Central
Google Scholar
Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. The Lancet, 383, 69.
Article
Google Scholar
Napierala, H., Hillebrandt, K. H., Haep, N., Tang, P., Tintemann, M., Gassner, J., Noesser, M., Everwien, H., Seiffert, N., Kluge, M., Teegen, E., Polenz, D., Lippert, S., Geisel, D., Reutzel Selke, A., Raschzok, N., Andreou, A., Pratschke, J., Sauer, I. M., & Struecker, B. (2017). Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports, 2(7), 41777. https://doi.org/10.1038/srep41777
CAS
Article
Google Scholar
Ludwig, B., Ludwig, S., Steffen, A., Saeger, H. D., & Bornstein, S. R. (2019). Islet versus pancreas transplantation in type 1 diabetes: Competitive or complementary? Current Diabetes Reports, 10, 506–511. https://doi.org/10.1007/s11892-010-0146-y
Article
Google Scholar
Barton, F. B., Rickels, M. R., Alejandro, R., Hering, B. J., Wease, S., Naziruddin, B., Oberholzer, J., Odorico, J. S., Garfinkel, M. R., Levy, M., Pattou, F., Berney, T., Secchi, A., Messinger, S., Senior, P. A., Maffi, P., Posselt, A., Stock, P. G., Kaufman, D. B., & Shapiro, A. M. (2012). Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care, 35, 1436–1445. https://doi.org/10.2337/dc12-0063
CAS
Article
PubMed
PubMed Central
Google Scholar
Olsson, R., Olerud, J., Pettersson, U., & Carlsson, P. O. (2011). Increased numbers of low-oxygenated pancreatic islets after intraportal islet transplantation. Diabetes, 60, 2350–2353. https://doi.org/10.2337/db09-0490
CAS
Article
PubMed
PubMed Central
Google Scholar
Kawahara, T., Kin, T., Kashkoush, S., Gala-Lopez, B., Bigam, D. L., Kneteman, N. M., Koh, A., Senior, P. A., & Shapiro, A. M. (2011). Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. American Journal of Transplantation, 11, 2700–2707. https://doi.org/10.1111/j.1600-6143.2011.03717.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Kawahara, T., Kin, T., & Shapiro, A. M. (2012). A comparison of islet autotransplantation with allotransplantation and factors elevating acute portal pressure in clinical islet transplantation. Journal of Hepato-Biliary-Pancreatic Sciences, 19, 281–288. https://doi.org/10.1007/s00534-011-0441-2
Article
PubMed
Google Scholar
Naziruddin, B., Iwahashi, S., Kanak, M. A., Takita, M., Itoh, T., & Levy, M. F. (2014). Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. American Journal of Transplantation, 14, 428–437. https://doi.org/10.1111/ajt.12558
CAS
Article
PubMed
Google Scholar
Struecker, B., Raschzok, N., & Sauer, I. M. (2014). Liver support strategies: cutting-edge technologies. Nature Reviews Gastroenterology & Hepatology, 11, 166–176. https://doi.org/10.1038/nrgastro.2013.204
CAS
Article
Google Scholar
Wang, Y., Cui, C. B., Yamauchi, M., Miguez, P., Roach, M., Malavarca, R., Costello, M. J., Cardinale, V., Wauthier, E., Barbier, C., Gerber, D. A., Alvaro, D., & Reid, L. M. (2011). Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology, 53, 293–305. https://doi.org/10.1002/hep.24012
CAS
Article
PubMed
Google Scholar
Orlando, G., Farney, A. C., Iskandar, S. S., Mirmalek-Sani, S. H., Sullivan, D. C., Moran, E., AbouShwareb, T., De Coppi, P., Wood, K. J., Stratta, R. J., Atala, A., Yoo, J. J., & Soker, S. (2012). Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Annals of Surgery, 256, 363–370. https://doi.org/10.1097/SLA.0b013e31825a02ab
Article
PubMed
Google Scholar
Song, J. J., & Ott, H. C. (2011). Organ engineering based on decellularized matrix scaffolds. Trends in Molecular Medicine, 17, 424–432. https://doi.org/10.1016/j.molmed.2011.03.005
CAS
Article
PubMed
Google Scholar
Sullivan, D. C., Mirmalek-Sani, S. H., Deegan, D. B., Baptista, P. M., Aboushwareb, T., Atala, A., & Yoo, J. J. (2012). Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials, 33, 7756–7764. https://doi.org/10.1016/j.biomaterials.2012.07.023
CAS
Article
PubMed
Google Scholar
Xu, T., Zhu, M., Guo, Y., Wu, D., Huang, Y., Fan, X., Zhu, S., Lin, C., Li, X., Lu, J., Zhu, H., Zhou, P., Lu, Y., & Wang, Z. (2015). Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application. Journal of Biomaterials Applications, 30, 379–387. https://doi.org/10.1177/0885328215587610
CAS
Article
PubMed
Google Scholar
von Mach, M. A., Schlosser, J., Weiland, M., Feilen, P. J., Ringel, M., Hengstler, J. G., Weilemann, L. S., Beyer, J., Kann, P., & Schneider, S. (2003). Size of pancreatic islets of Langerhans: A key parameter for viability after cryopreservation. Acta Diabetologica, 40, 123–129. https://doi.org/10.1007/s00592-003-0100-4
Article
Google Scholar
Zhou, P., Guo, Y., Huang, Y., Zhu, M., Fan, X., Wang, L., Wang, Y., Zhu, S., Xu, T., Wu, D., Lu, Y., & Wang, Z. (2016). The dynamic three-dimensional culture of islet-like clusters in decellularized liver scaffolds. Cell and Tissue Research, 365, 157–171. https://doi.org/10.1007/s00441-015-2356-8
CAS
Article
PubMed
Google Scholar
Uygun, B. E., Soto-Gutierrez, A., Yagi, H., Izamis, M. L., Guzzardi, M. A., Shulman, C., Milwid, J., Kobayashi, N., Tilles, A., Berthiaume, F., Hertl, M., Nahmias, Y., Yarmush, M. L., & Uygun, K. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16, 814–820. https://doi.org/10.1038/nm.2170
CAS
Article
PubMed
PubMed Central
Google Scholar
Shirakigawa, N., Ijima, H., & Takei, T. (2012). Decellularized liver as a practical scaffold with a vascular network template for liver tissue engineering. Journal of Bioscience and Bioengineering, 114, 546–551. https://doi.org/10.1016/j.jbiosc.2012.05.022
CAS
Article
PubMed
Google Scholar
Shupe, T., Williams, M., Brown, A., Willenberg, B., & Petersen, B. E. (2010). Method for the decellularization of intact rat liver. Organogenesis, 6, 134–136. https://doi.org/10.4161/org.6.2.11546
Article
PubMed
PubMed Central
Google Scholar
Soto-Gutierrez, A., Wertheim, J. A., Ott, H. C., & Gilbert, T. W. (2012). Perspectives on whole-organ assembly: moving toward transplantation on demand. Journal of Clinical Investigation, 122, 3817–3823. https://doi.org/10.1172/JCI61974
CAS
Article
Google Scholar
Struecker, B., Hillebrandt, K. H., Voitl, R., Butter, A., Schmuck, R. B., Reutzel-Selke, A., Andreou, A., Napierala, H., Raschzok, N., Pratschke, J., Sauer, I. M., & Struecker, B. (2015). Porcine liver decellularization under oscillating pressure conditions: A technical refinement to improve the homogeneity of the decellularization process. Tissue Engineering Part C: Methods, 21, 303–313. https://doi.org/10.1089/ten.TEC.2014.0321
CAS
Article
Google Scholar
Struecker, B., Butter, A., Hillebrandt, K., Polenz, D., Reutzel-Selke, A., Tang, P., Lippert, S., Leder, A., Rohn, S., Geisel, D., Denecke, T., Aliyev, K., Jöhrens, K., Raschzok, N., Neuhaus, P., Pratschke, J., & Sauer, I. M. (2017). Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. Journal of Tissue Engineering and Regenerative Medicine, 11, 531–541. https://doi.org/10.1002/term.1948
CAS
Article
PubMed
Google Scholar
Park, K. M., & Woo, H. M. (2012). Systemic decellularization for multi-organ scaffolds in rats. Transplantation Proceedings, 44, 1151–1154. https://doi.org/10.1016/j.transproceed.2012.03.017
CAS
Article
PubMed
Google Scholar
Ren, H., Shi, X., Tao, L., Xiao, J., Han, B., Zhang, Y., Yuan, X., & Ding, Y. (2013). Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold. Liver International, 33, 448–458. https://doi.org/10.1111/liv.12088
CAS
Article
PubMed
Google Scholar
Bao, J., Shi, Y., Sun, H., Yin, X., Yang, R., Li, L., Chen, X., & Bu, H. (2011). Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplantation, 20, 753–766. https://doi.org/10.3727/096368910X536572
Article
PubMed
Google Scholar
Baptista, P. M., Siddiqui, M. M., Lozier, G., Rodriguez, S. R., Atala, A., & Soker, S. (2011). The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 53, 604–617. https://doi.org/10.1002/hep.24067
CAS
Article
PubMed
Google Scholar
Bosco, D., Orci, L., & Meda, P. (1989). Homologous but not heterologous contact increases the insulin secretion of individual pancreatic B-cells. Experimental Cell Research, 184, 72–80. https://doi.org/10.1016/0014-4827(89)90365-0
CAS
Article
PubMed
Google Scholar
De Kock, J., Ceelen, L., De Spiegelaere, W., Casteleyn, C., Claes, P., Vanhaecke, T., & Rogiers, V. (2011). Simple and quick method for whole-liver decellularization: A novel in vitro three-dimensional bioengineering tool. Archives of Toxicology, 85, 607–612. https://doi.org/10.1007/s00204-011-0706-1
CAS
Article
PubMed
Google Scholar
Butter, A., Aliyev, K., Hillebrandt, K. H., Raschzok, N., Kluge, M., Seiffert, N., Tang, P., Napierala, H., Muhamma, A. I., Reutzel-Selke, A., Andreou, A., Pratschke, J., Sauer, I. M., & Struecker, B. (2018). Evolution of graft morphology and function after recellularization of decellularized rat livers. Journal of Tissue Engineering and Regenerative Medicine, 12, e807–e816. https://doi.org/10.1002/term.2383
CAS
Article
PubMed
Google Scholar
Hillebrandt, K., Polenz, D., Butter, A., Tang, P., Reutzel-Selke, A., Andreou, A., Napierala, H., Raschzok, N., Pratschke, J., Sauer, I. M., & Struecker, B. (2015). Procedure for decellularization of rat livers in an oscillating-pressure perfusion device. Journal of Visualized Experiments, 10, e53029. https://doi.org/10.3791/53029
CAS
Article
Google Scholar
Everwien, H., Keshi, E., Hillebrandt, K. H., Ludwig, B., Weinhart, M., Tang, P., Beierle, A. S., Napierala, H., Gassner, J. M., Seiffert, N., Moosburner, S., Geisel, D., Reutzel-Selke, A., Strücker, B., Pratschke, J., Haep, N., & Sauer, I. M. (2020). Engineering an endothelialized, endocrine Neo-Pancreas: Evaluation of islet functionality in an ex vivo model. Acta Biomaterialia, 117, 213–225. https://doi.org/10.1016/j.actbio.2020.09.022
CAS
Article
PubMed
Google Scholar
Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32, 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057
CAS
Article
PubMed
PubMed Central
Google Scholar
da Palma, R. K., Campillo, N., Uriarte, J. J., Oliveira, L. V., Navajas, D., & Farré, R. (2015). Pressure- and flow-controlled media perfusion differently modify vascular mechanics in lung decellularization. Journal of the Mechanical Behavior of Biomedical Materials, 49, 69–79. https://doi.org/10.1016/j.jmbbm.2015.04.024
Article
PubMed
Google Scholar
Guyette, J. P., Gilpin, S. E., Charest, J. M., Tapias, L. F., Ren, X., & Ott, H. C. (2014). Perfusion decellularization of whole organs. Nature Protocols, 9, 1451–1468. https://doi.org/10.1038/nprot.2014.097
CAS
Article
PubMed
Google Scholar
Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221. https://doi.org/10.1038/nm1684
CAS
Article
PubMed
Google Scholar
Schubert, U., Schmid, J., Lehmann, S., Zhang, X. Y., Morawietz, H., Block, N. L., Kanczkowski, W., Schally, A. V., Bornstein, S. R., & Ludwig, B. (2013). Transplantation of pancreatic islets to adrenal gland is promoted by agonists of growth-hormone-releasing hormone. Proceedings of the National Academy of Sciences, 5, 2288–2293. https://doi.org/10.1073/pnas.1221505110
Article
Google Scholar
Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica (Acta)—BBA General Subjects, 883, 173–177. https://doi.org/10.1016/0304-4165(86)90306-5
CAS
Article
Google Scholar
Hayashi, K. (1975). A rapid determination of sodium dodecyl sulfate with methylene blue. Analytical Biochemistry, 67, 503–506. https://doi.org/10.1016/0003-2697(75)90324-3
CAS
Article
PubMed
Google Scholar
Smink, A. M., de Haan, B. J., Lakey, J. R. T., & de Vos, P. (2018). Polymer scaffolds for pancreatic islet transplantation—Progress and challenges. American Journal of Transplantation, 18(9), 2113–2119. https://doi.org/10.1111/ajt.14942
Article
PubMed
Google Scholar
Ott, H. C., Clippinger, B., Conrad, C., Schuetz, C., Pomerantseva, I., Ikonomou, L., Kotton, D., & Vacanti, J. P. (2010). Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 16(8), 927–933. https://doi.org/10.1038/nm.2193
CAS
Article
PubMed
Google Scholar
Wang, Y., Cui, C. B., Yamauchi, M., Miguez, P., Roach, M., Malavarca, R., et al. (2011). Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology, 53(1), 293–305. https://doi.org/10.1002/hep.24012
CAS
Article
PubMed
Google Scholar
Jiang, B., Akgun, B., Lam, R. C., Ameer, G. A., & Wertheim, J. A. (2015). A polymer-extracellular matrix composite with improved thromboresistance and recellularization properties. Acta Biomaterialia, 18, 50–58. https://doi.org/10.1016/j.actbio.2015.02.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Ishida, N., Ishiyama, K., Saeki, Y., Tanaka, Y., & Ohdan, H. (2019). Co-transplantation of pre-activated mesenchymal stem cells improves intraportal engraftment of islets by inhibiting liver natural killer cells in mice. American Journal of Transplantation, 19(10), 2732–2745. https://doi.org/10.1111/ajt.15347
CAS
Article
PubMed
Google Scholar
Darmsteegt, E. L., Hassan, Z., Hewawasam, N. V., Sarnsamak, K., Jones, P. M., & Hauge-Evans, A. C. (2019). A novel role for somatostatin in the survival of mouse pancreatic beta cells. Cellular Physiology and Biochemistry, 52(3), 486–502. https://doi.org/10.33594/000000035
CAS
Article
Google Scholar