Skip to main content

Advertisement

Log in

Prediction of Stress Shielding Around Orthopedic Screws: Time-Dependent Bone Remodeling Analysis Using Finite Element Approach

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Loosening of bone screws caused by stress shielding, and subsequent unbalanced bone remodeling processes, results in bone loss around the screws, which can ultimately lead to bone fixation failure. Predicting the effects of the structural and material properties of screws on bone remodeling is crucially important in screw design and fixation reliability. Many studies have attempted to assess the significance of orthopedic screw parameters on screw pullout strength, but few have considered bone remodeling processes around the screw threads. The main objective of this study was to investigate the effects of various engineering designs of bone screws on stress shielding and screw loosening in a bone-screw system using a two-dimensional finite element model (FEM), including cortical and cancellous bone, and an orthopedic screw. In order to do so, an adaptive bone strain energy density algorithm was combined with FEM to study a 4-year follow-up of bone remodeling around the screw implant. A dimensionless set of stress transfer parameters (STP), and a newly defined parameter, called the strain energy density transfer parameter (SEDTP), were developed to quantify the screw-bone load sharing patterns. Lower STP and SEDTP values indicate a weaker transfer of mechanical stimuli to the neighboring bone. The results of this study show that increasing the major diameter of the screw, increasing the number of threads, and decreasing the minor screw diameter, pitch, and elastic modulus decrease the probability of screw loosening. The approach used here is not limited to the analysis of orthopedic screws, but may be used for other implant devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gefen, A. (2002). Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Medical and Biological Engineering and Computing, 40, 311–322.

    Article  Google Scholar 

  2. Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24, 337–347.

    Article  Google Scholar 

  3. Haase, K., & Rouhi, G. (2013). Prediction of stress shielding around an orthopaedic screw: Using stress and strain energy density as mechanical stimuli. Computers in Biology and Medicine, 43, 1748–1757.

    Article  Google Scholar 

  4. Uhthoff, H. K., Boisvert, D., & Finnegan, M. (1994). Cortical porosis under plates. Reaction to unloading or to necrosis. Journal of Bone and Joint Surgery. American Volume, 76, 1507–1512.

    Google Scholar 

  5. Uhthoff, H. K., & Jaworski, Z. F. G. (1978). Bone loss in response to long-term immobilization. Journal of Bone and Joint Surgery. British Volume, 60-B, 420–429.

    Google Scholar 

  6. vanLenthe, G. H., Malefijt, M. C. D., & Huiskes, R. (1997). Stress shielding after total knee replacement may cause bone resorption in the distal femur. Journal of Bone and Joint Surgery. British Volume, 79, 117–122.

    Article  Google Scholar 

  7. Okuyama, K., Abe, E., Suzuki, T., Tamura, Y., Chiba, M., & Sato, K. (2000). Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine, 25, 858–864.

    Article  Google Scholar 

  8. Schatzker, J., Horne, J. G., & Sumnersmith, G. (1975). Reaction of cortical bone to compression by screw threads. Clinical Orthopaedics and Related Research, 111, 263–265.

    Article  Google Scholar 

  9. Perren, S. M., Huggler, A., Russenberger, M., Allgöwer, M., Mathys, R., Schenk, R., et al. (1969). Reaction of cortical bone to compression. Acta Orthopaedica Scandinavica, 125, 19–29.

    Google Scholar 

  10. Lin, D., Li, Q., Li, W., Duckmanton, N., & Swain, M. (2010). Mandibular bone remodeling induced by dental implant. Journal of Biomechanics, 43, 287–293.

    Article  Google Scholar 

  11. Lin, C. L., Lin, Y. H., & Cheng, S. H. (2010). Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: prediction using FEA and SED bone remodeling algorithm. Journal of Biomechanics, 43, 644–651.

    Article  Google Scholar 

  12. Lin, D., Li, Q., Li, W., Zhou, S., & Swain, M. W. (2009). Design optimization of functionally graded dental implant for bone remodeling. Composites Part B: Engineering, 40, 668–675.

    Article  Google Scholar 

  13. Chou, H. Y., Jagodnik, J. J., & Muftu, S. (2008). Predictions of bone remodelling around dental implant systems. Journal of Biomechanics, 41, 1365–1373.

    Article  Google Scholar 

  14. Lin, D., Li, Q., Li, W., & Swain, M. (2010). Bone remodeling induced by dental implants of functionally graded materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92, 430–438.

    Google Scholar 

  15. Chun, H. J., Cheong, S. Y., Han, J. H., Heo, S. J., Chung, J. P., Rhyu, I. C., et al. (2010). Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation, 29, 565–574.

    Article  Google Scholar 

  16. Rouhi, G. (2012). Biomechanics of Osteoporosis: The importance of bone resorption and remodeling processes in osteoporosis. In Y. Dionyssiotis (Ed.), Osteoporosis (pp. 59–78).

  17. Lee, W. C. C., Doocey, J. M., Branemark, R., Adam, C. J., Evans, J. H., Pearcy, M. J., & Frossard, L. A. (2008). FE stress analysis of the interface between the bone and an osseointegrated implant for amputees: Implication to refine the rehabilitation program. Clinical Biomechanics, 23, 1243–1250.

    Article  Google Scholar 

  18. Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). The behavior of adaptive bone-remodeling simulation-models. Journal of Biomechanics, 25, 1425–1441.

    Article  Google Scholar 

  19. Müller, R. (2005). Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling. Osteoporosis International, 16, 25–35.

    Article  Google Scholar 

  20. Sharma, G. B., Debski, R. E., McMahon, P. J., & Robertson, D. D. (2009). Adaptive glenoid bone remodeling simulation. Journal of Biomechanics, 42, 1460–1468.

    Article  Google Scholar 

  21. Vahdati, A., & Rouhi, G. (2009). A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse. Mechanics Research Communications, 36, 284–293.

    Article  MATH  Google Scholar 

  22. Rouhi, G. (2006). Theoretical aspects of bone remodeling and resorption process. Ph.D Dissertation, University of Calgary, Alberta.

  23. Rouhi, G. (2011). Theoretical investigations on bone resorption process: a tri-phasic mixture model. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1947–1954.

    Article  Google Scholar 

  24. Brown, T. D., Pedersen, D. R., Gray, M. L., Brand, R. A., & Rubin, C. T. (1990). Toward an identification of mechanical parameters initiating periosteal remodeling-a combined experimental and analytic approach. Journal of Biomechanics, 23, 893–905.

    Article  Google Scholar 

  25. Huiskes, R., Ruimerman, R., van Lenthe, G. H., & Janssen, J. D. (2000). Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature, 405, 704–706.

    Article  Google Scholar 

  26. Rouhi, G., Epstein, M., Sudak, L., & Herzog, W. (2007). Modeling bone resorption using mixture theory with chemical reactions. Journal of Mechanics of Materials and Structures, 2, 1141–1156.

    Article  Google Scholar 

  27. van Oers, R. F., Ruimerman, R., Tanck, E., Hilbers, P. A., & Huiskes, R. (2008). A unified theory for osteonal and hemi-osteonal remodeling. Bone, 42, 250–259.

    Article  Google Scholar 

  28. Brinley, C. L. (2008). The effects of pitch and fluting on insertion torque and pullout strength of miniscrew implants. M.Sc. Thesis, Saint Louis University.

  29. Shah, A. H. (2011). Effect of mini-screw characteristics (length and outer diameter) and bone properties (cortical thickness and density) on insertion torque and pullout trength. M.Sc. Thesis, Saint Louis University.

  30. Shuib, S., Ridzwan, M. I. Z., Mohammad Ibrahim, M. N., & Tan, C. T. (2007). Analysis of orthopedic screws for bone fracture fixations with finite element method. Journal of Applied Sciences, 7, 1748–1754.

    Article  Google Scholar 

  31. Haase, K. (2009). Finite element analysis of orthopaedic plates and screws to reduce the effects of stress shielding. M.Sc. Thesis, University of Ottawa, Ottawa, Ontario.

  32. Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). Effects of material properties of femoral hip components on bone remodeling. Journal of Orthopaedic Research, 10, 845–853.

    Article  Google Scholar 

  33. Huiskes, R., Weinans, H., Grootenboer, H. J., Dalsra, M., Fudala, B., & Slooff, T. J. (1987). Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics, 20, 1135–1150.

    Article  Google Scholar 

  34. Troy, K. L., & Grabiner, M. D. (2007). Off-axis loads cause failure of the distal radius at lower magnitudes than axial loads: a finite element analysis. Journal of Biomechanics, 40, 1670–1675.

    Article  Google Scholar 

  35. Ruimerman, R., Hilbers, P., van Rietbergen, B., & Huiskes, R. (2005). A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics, 38, 931–941.

    Article  Google Scholar 

  36. Chen, S. L., Lin, R. M., & Chang, C. H. (2003). Biomechanical investigation of pedicle screw–vertebrae complex: a finite element approach using bonded and contact interface conditions. Medical Engineering & Physics, 25, 275–282.

    Article  Google Scholar 

  37. Hansson, S., & Werke, M. (2003). The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: A finite element study. Journal of Biomechanics, 36, 1248–1257.

    Article  Google Scholar 

  38. Esmail, E., Hassan, N., & Kadah, Y. (2010). A three-dimensional finite element analysis of the osseointegration progression in the human mandible. Proc. SPIE 7625, Medical Imaging, 7625(76253F), 1–12.

    Google Scholar 

  39. Kong, L., Hu, K., Li, D., Song, Y., Yang, J., Wu, Z., & Liu, B. (2008). Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. The International Journal of Oral & Maxillofacial Implants, 23, 65–74.

    Google Scholar 

  40. Schatzker, J., Sanderson, R., & Murnaghan, J. P. (1975). The holding power of orthopedic screws in vivo. Clinical Oorthopaedics and Related Research, 108, 115–126.

    Article  Google Scholar 

  41. Evans, M., Spencer, M., Wang, Q., White, S. H., & Cunningham, J. L. (1990). Design and testing of external fixator bone screws. Journal of Biomedical Engineering, 12, 457–462.

    Article  Google Scholar 

  42. Azwan, M. S., & Abd Rahim, I. (2011). Recent studies on the pullout strength behavior of spinal fixation. Journal of Developmental Biology and Tissue Engineering, 3, 48–54.

    Google Scholar 

  43. DeCoster, T. A., Heetderks, D. B., Downey, D. J., Ferries, J. S., & Jones, W. (1990). Optimizing bone screw pullout force. Journal of Orthopaedic Trauma, 4, 169–174.

    Article  Google Scholar 

  44. Carano, A., Lonardo, P., Velo, S., & Incorvati, C. (2005). Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Prog Orthop, 6, 82–97.

    Google Scholar 

  45. Abuhussein, H., Pagni, G., Rebaudi, A., & Wang, H. L. (2010). The effect of thread pattern upon implant osseointegration. Clinical Oral Implants Research, 21, 129–136.

    Article  Google Scholar 

  46. Harel, N., Eshkol-Yogev, I., Piek, D., Livne, S., Lavi, D., & Ormianer, Z. (2013). Bone microstrain values of 1-piece and 2-piece implants subjected to mechanical loading. Implant Dentistry, 22, 277–281.

    Article  Google Scholar 

  47. Fakhouri, S. F., Shimano, M. M., de Araújo, C. A., Defino, H. L., & Shimano, A. C. (2014). Analysis of stress induced by screws in the vertebral fixation. Acta Ortopedica Brasileira, 22, 17–20.

    Article  Google Scholar 

  48. Kong, L., Sun, Y., Hu, K., Li, D., Hou, R., Yang, J., & Liu, B. (2008). Bivariate evaluation of cylinder implant diameter and length: A three-dimensional finite element analysis. Journal of Prosthodontics, 17, 286–293.

    Article  Google Scholar 

  49. Hearn, T. C., Schatzker, J., & Wolfson, N. (1993). Extraction strength of cannuated cancellous bone screws. Journal of Orthopaedic Trauma, 7, 138–141.

    Article  Google Scholar 

  50. Hughes, A. N., & Jordan, B. A. (1972). The mechanical properties of surgical bone screws and some aspects of insertion practice. Injury, 4, 25–38.

    Article  Google Scholar 

  51. Ivanoff, C. J., Gröndahl, K., Sennerby, L., Bergström, C., & Lekholm, U. (1999). Influence of variations in implant diameters: a 3- to 5-year retrospective clinical report. International Journal of Oral and Maxillofacial Implants, 14, 173–180.

    Google Scholar 

  52. Motoyoshi, M., Hirabayashi, M., Uemura, M., & Shimizu, N. (2006). Recommended placement torque when tightening an orthodontic mini-implant. Clinical Oral Implants Research, 17, 109–114.

    Article  Google Scholar 

  53. Hou, S. M., Hsu, C. C., Wang, J. L., Chao, C. K., & Lin, J. (2004). Mechanical tests and finite element models for bone holding power of tibial locking screws. Clinical Biomechanics, 19, 738–745.

    Article  Google Scholar 

  54. Behrend, C., George, S., & Molinari, R. (2013). Biomechanical evaluation of anterior thoracic salvage screws in the osteoporotic thoracic spine. Journal of Spinal Disorders & Techniques, 26, 235–239.

    Article  Google Scholar 

  55. Miyawaki, S., Koyama, I., Inoue, M., Mishima, K., Sugahara, T., & Takano-Yamamoto, T. (2003). Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics, 124, 373–378.

    Article  Google Scholar 

  56. Holmgren, E. P., Seckinger, R. J., Kilgren, L. M., & Mante, F. (1998). Evaluating parameters of osseointegrated dental implant using finite element analysis a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology, 24, 80–88.

    Article  Google Scholar 

  57. Claes, L. (1989). The mechanical and morphological properties of bone beneath internal-fixation plates of differing rigidity. Journal of Orthopaedic Research, 7, 170–177.

    Article  Google Scholar 

  58. Uhthoff, H. K., Bardos, D. I., & Liskovakiar, M. (1981). The advantages of titanium-alloy over stainless-steel plates for the internal-fixation of fractures. An experimental-study in dogs. Journal of Bone & Joint Surgery, 63, 727–734.

    Google Scholar 

  59. Chenglin, C., Jingchuan, Z., Zhongda, Y., & Shidong, W. (1999). Hydroxyapatite–Ti functionally graded biomaterial fabricated by powder metallurgy. Materials Science and Engineering: A, 271, 95–100.

    Article  Google Scholar 

  60. Huiskes, R., Weinans, H., & van Rietbergen, B. (1992). The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research, 274, 124–134.

    Google Scholar 

  61. Barrey, C. Y., Ponnappan, R. K., Song, J., & Vaccaro, A. R. (2008). Biomechanical evaluation of pedicle screw-based dynamic stabilization devices for the lumbar spine: A systematic review. International Journal of Spine Surgery, 2, 159–170.

    Google Scholar 

  62. Johnson, A. J. (2007). Humeral fracture fixation techniques: A FEA comparison of locking and compression techniques with cadaveric pullout comparison of cortical compression and internal locking screws. M.Sc Thesis, University of Maryland, Maryland, Gaithersberg.

  63. Nayman, J. S., Hazelwood, S. J., Rodrigo, J. J., Martin, R. B., & Yeh, O. C. (2004). Long stemmed total knee arthroplasty with interlocking screws: A computational bone adaptation study. Journal of Orthopaedic Research, 22, 51–57.

    Article  Google Scholar 

  64. Ihde, S., Goldmann, T., Himmlova, L., & Aleksic, Z. (2008). The use of finite element analysis to model bone-implant contact with basal implants. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 106, 39–48.

    Article  Google Scholar 

  65. Yang, J., & Xiang, H. J. (2007). A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. Journal of Biomechanics, 40, 2377–2385.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ferdowsi University, Mashhad, Iran, Amirkabir University of Technology, Tehran, Iran, and University of Calgary, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Tahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, G., Tahani, M., Haghighi, B. et al. Prediction of Stress Shielding Around Orthopedic Screws: Time-Dependent Bone Remodeling Analysis Using Finite Element Approach. J. Med. Biol. Eng. 35, 545–554 (2015). https://doi.org/10.1007/s40846-015-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0066-z

Keywords

Navigation