Skip to main content
Log in

A Novel Simulation Model for Multiple Solid Particle Erosion in Micro-blasting Process of Ti-6Al-4V Dental Implant Alloy Considering Actual Geometry of Impacting Particles

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Dental implants undergo a general surface treatment via micro-blasting, where solid particle erosion (SPE) occurs on their surfaces. Considering the high costs of SPE experiments, it is necessary to present a reliable computer simulation that can provide a correct understanding of the erosion rate, residual stress and the characteristics of the scar created. However, simulating the impacts of numerous erosive particles with different shapes is challenging. This article, using numerical and experimental approaches, focused on effects of particle velocity and angle of impact on the surface responses of Ti-6Al-4V. In the simulation, the real shapes of more than 1500 angular particles were reproduced through an image processing technique. Johnson-Cook/Zerilli-Armstrong constitutive model was established for analysis. The accuracy of finite element (FE) and smoothed-particle hydrodynamics (SPH) was compared with experiments at oblique and normal micro-blasting in three velocities. Erosion rate, residual stress and scar area were investigated. Higher velocities showed more accurate erosion rate results with SPH, whereas the FE model suited lower ones. SPH outperformed FE in predicting surface residual stress. For normal impacts, the SPH was more reliable in predicting the scar area, while the FE was more accurate for oblique impacts. SEM results indicated both penetration and cutting mechanisms at 35°, but only pure penetration was the main mechanism at 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The authors guarantee that there is no data availability statement with other people or organizations in this article.

References

  1. Khoddami, A.; Nasiri, M.A.; Mohammadi, B.: Experimental and numerical study on micro-blasting process of 3A dental implant titanium alloy: a comparison between finite element method and smoothed particle hydrodynamics. J. Mech. Behav. Biomed. Mater. 132, 105269 (2022)

    Article  Google Scholar 

  2. Nayak, S.K.; Satapathy, A.; Mantry, S.: Impact of process parameters on solid particle erosion behavior of waste marble dust-filled polyester composites. Arab. J. Sci. Eng. 46, 7197–7209 (2021)

    Article  Google Scholar 

  3. Minhas, N.; Thakur, A.; Mehlwal, S.; Verma, R.; Sharma, V.S.; Sharma, V.: Multi-variable optimization of the shot blasting of additively manufactured alsi10mg plates for surface roughness using response surface methodology. Arab. J. Sci. Eng. 46, 11671–11685 (2021)

    Article  Google Scholar 

  4. Joshi, S.; Franc, J.P.; Ghigliotti, G.; Fivel, M.: Bubble collapse induced cavitation erosion: plastic strain and energy dissipation investigations. J. Mech. Phys. Solids 134, 103749 (2020)

    Article  MathSciNet  Google Scholar 

  5. Alroy, R.J.; Kamaraj, M.; Sivakumar, G.: HVAF vs oxygenated HVAF spraying: Fundamental understanding to optimize Cr3C2-NiCr coatings for elevated temperature erosion resistant applications. J. Mater. Process. Technol. 309, 117735 (2022)

    Article  Google Scholar 

  6. Kedir, N.; Garcia, E.; Kirk, C.; Gao, J.; Guo, Z.; Zhai, X.; Sun, T.; Fezzaa, K.; Sampath, S.; Chen, W.W.: Impact damage of narrow silicon carbide (SiC) ceramics with and without environmental barrier coatings (EBCs) by various foreign object debris (FOD) simulants. Surf. Coat. Technol. 407, 126779 (2021)

    Article  Google Scholar 

  7. Rajahram, S.S.: Erosion-corrosion mechanisms of stainless steel UNS S31603 (Doctoral dissertation, University of Southampton), (2010)

  8. Kar, S.; Patowari, P.K.: An experimental investigation of the erosion phenomenon in µED-milling of titanium and its parametric optimization using desirability analysis. Arab. J. Sci. Eng. 47(7), 8847–8861 (2022)

    Article  Google Scholar 

  9. Khoddami, A.; Mohammadi, B.: Finite element modeling of multiple solid particles erosion for Ti-6Al-4V based on Johnson-Cook plasticity and failure models. Modares Mech. Eng. 20(4), 877–887 (2020)

    Google Scholar 

  10. Kang, J.; Wang, L.; Yang, C.; Wang, L.; Yi, C.; He, J.; Li, D.: Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech. Model. Mechanobiol. 17, 1083–1092 (2018)

    Article  Google Scholar 

  11. Zhang, H.; Cai, Z.; Chi, J.; Sun, R.; Che, Z.; Lin, L.; Peng, P.; Zhang, H.; Guo, W.: Gradient microstructure evolution in laser shock peened Ti6Al4V titanium alloy. Surf. Coat. Technol. 437, 128378 (2022)

    Article  Google Scholar 

  12. Vayron, R.; Nguyen, V.H.; Bosc, R.; Naili, S.; Haïat, G.: Finite element simulation of ultrasonic wave propagation in a dental implant for biomechanical stability assessment. Biomech. Model. Mechanobiol. 14, 1021–1032 (2015)

    Article  Google Scholar 

  13. Mohammadi, B.; Khoddami, A.: Representative volume element-based simulation of multiple solid particles erosion of a compressor blade considering temperature effect. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 234(8), 1173–1184 (2020)

    Article  Google Scholar 

  14. Hu, Y.; Pan, J.; Dai, Q.; Huang, W.; Wang, X.: Solid particle erosion-wear behaviour of SiC particle-reinforced Si matrix composite and neat Si—a comparison. Wear 496, 204286 (2022)

    Article  Google Scholar 

  15. Saebi, D.; Khoddami, A.; Mohammadi, B.: Finite element investigation of multiple solid particle erosion of Al 7075–T6 and Ti-6Al-4V alloys. Aerosp. Mech. J. 16(4), 13–24 (2020)

    Google Scholar 

  16. Mohammadi, B.; Khoddami, A.; Pourhosseinshahi, M.: Numerical and experimental investigation of erosive wear of Ti-6Al-4V alloy. J. Tribol. 141(10), 101603 (2019)

    Article  Google Scholar 

  17. Nekahi, M.M.; Vazquez, E.V.; Papini, M.: Numerical simulation of solid particle erosion of alumina by overlapping irregular-shaped particle impacts. Tribol. Lett. 70(2), 50 (2022)

    Article  Google Scholar 

  18. Parkash, O.; Kumar, A.; Sikarwar, B.S.: Computational erosion wear model validation of particulate flow through mitre pipe bend. Arab. J. Sci. Eng. 46, 12373–12390 (2021)

    Article  Google Scholar 

  19. Parvandar Asadollahi, B.; Pour Panah, M.; Javdani, A.: Experimental investigation and molecular dynamics simulation of contributing variables on abrasive water jet on aluminum alloy 7075 reinforced with Al2O3, graphite and silicon carbide. Arab. J. Sci. Eng. 47(12), 15303–15321 (2022)

    Article  Google Scholar 

  20. Hutchings, I.M.; Winter, R.E.; Field, J.E.: Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc. Royal Soc. London. A. Math. Phys. Sci. 348(1654), 379–392 (1976)

    Google Scholar 

  21. Dhar, S.; Krajac, T.; Ciampini, D.; Papini, M.: Erosion mechanisms due to impact of single angular particles. Wear 258(1–4), 567–579 (2005)

    Article  Google Scholar 

  22. Hu, Y.; Dai, Q.; Huang, W.; Wang, X.: Characteristics of multiphase jet machining: a comparison with the absence of water. J. Mater. Process. Technol. 291, 117050 (2021)

    Article  Google Scholar 

  23. Smeltzer, C.E.; Gulden, M.E.; Compton, W.A.: Mechanisms of metal removal by impacting dust particles. J. Basic Eng. 92(3), 639–652 (1970)

    Article  Google Scholar 

  24. Tilly, G.P.: A two stage mechanism of ductile erosion. Wear 23(1), 87–96 (1973)

    Article  Google Scholar 

  25. Winter, R.E.; Hutchings, I.M.: Solid particle erosion studies using single angular particles. Wear 29(2), 181–194 (1974)

    Article  Google Scholar 

  26. Hutchings, I.M.: Deformation of metal surfaces by the oblique impact of square plates. Int. J. Mech. Sci. 19(1), 45–52 (1977)

    Article  Google Scholar 

  27. Takaffoli, M.; Papini, M.: Numerical simulation of solid particle impacts on Al6061-T6 Part II: materials removal mechanisms for impact of multiple angular particles. Wear 296(1–2), 648–655 (2012)

    Article  Google Scholar 

  28. Wang, Y.F.; Yang, Z.G.: A coupled finite element and meshfree analysis of erosive wear. Tribol. Int. 42(2), 373–377 (2009)

    Article  Google Scholar 

  29. ElTobgy, M.S.; Ng, E.; Elbestawi, M.A.: Finite element modeling of erosive wear. Int. J. Mach. Tools Manuf. 45(11), 1337–1346 (2005)

    Article  Google Scholar 

  30. Wang, Y.F.; Yang, Z.G.: Finite element model of erosive wear on ductile and brittle materials. Wear 265(5–6), 871–878 (2008)

    Article  Google Scholar 

  31. Khoddami, A.; Nasiri, M.; Mohammadi, B.: Study on effect of particle velocity and impact angle on erosion of Ti-6Al-4V alloy using smoothed particle hydrodynamics method. Modares Mech. Eng. 22(8), 509–518 (2022)

    Article  Google Scholar 

  32. Du, M.; Li, Z.; Dong, X.; Fan, C.; Che, J.; Zhang, Y.: Experiment and simulation of erosion behavior and deformation characteristics in Al6061-T6 beam due to rhomboid particle impacts. Tribol. Lett. 69, 1–25 (2021)

    Article  Google Scholar 

  33. Liu, Z.G.; Wan, S.; Nguyen, V.B.; Zhang, Y.W.: A numerical study on the effect of particle shape on the erosion of ductile materials. Wear 313(1–2), 135–142 (2014)

    Article  Google Scholar 

  34. Mohseni-Mofidi, S.; Drescher, E.; Kruggel-Emden, H.; Teschner, M.; Bierwisch, C.: Particle-based numerical simulation study of solid particle erosion of ductile materials leading to an erosion model, including the particle shape effect. Materials 15(1), 286 (2021)

    Article  Google Scholar 

  35. Dong, X.; Li, Z.; Mao, Z.; Lin, T.: A development of a SPH model for simulating surface Erosion by impact (s) of irregularly shaped particles. Int. J. Comput. Methods 15(08), 1850074 (2018)

    Article  MathSciNet  Google Scholar 

  36. Khoddami, A.; Salimi-Majd, D.; Mohammadi, B.: Finite element and experimental investigation of multiple solid particle erosion on Ti-6Al-4V titanium alloy coated by multilayer wear-resistant coating. Surf. Coat. Technol. 372, 173–189 (2019)

    Article  Google Scholar 

  37. Kumar, N.; Shukla, M.: Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. J. Comput. Appl. Math. 236(18), 4600–4610 (2012)

    Article  Google Scholar 

  38. Hadavi, V.: Experimental analysis and numerical modeling of particle embedment and fracture in the solid particle erosion of ductile materials (Doctoral dissertation, Ryerson University) (2016)

  39. Takaffoli, M: Experimental And numerical study of single and multiple imapcts of angular particles on ductile metals (Doctoral dissertation, Ryerson University), (2012)

  40. Yerramareddy, S.; Bahadur, S.: Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V. Wear 142(2), 253–263 (1991)

    Article  Google Scholar 

  41. Avcu, E.; Fidan, S.; Yıldıran, Y.; Sınmazçelik, T.: Solid particle erosion behaviour of Ti6Al4V alloy. Tribol.-Mater., Surf. Interfaces 7(4), 201–210 (2013)

    Article  Google Scholar 

  42. Naveed, M.; Schlag, H.; König, F.; Weiß, S.: Influence of the erodent shape on the erosion behavior of ductile and brittle materials. Tribol. Lett. 65(1), 18 (2017)

    Article  Google Scholar 

  43. Atroshenko, S.A.; Evstifeev, A.D.; Kazarinov, N.A.; Petrov, Y.V.; Valiev, R.Z.: Behavior of the grade 5 titanium alloy in different structural states in conditions of high-speed erosion. Proced. Struct. Integr. 6, 190–195 (2017)

    Article  Google Scholar 

  44. Kazarinov, N.A.; Evstifeev, A.D.; Petrov, Y.V.; Atroshenko, S.A.; Valiev, R.R.: The effect of grain refinement on solid particle erosion of grade 5 Ti alloy. J. Mater. Eng. Perform. 27, 3054–3059 (2018)

    Article  Google Scholar 

  45. Granato, R.; Bonfante, E.A.; Castellano, A.; Khan, R.; Jimbo, R.; Marin, C.; Morsi, S.; Witek, L.; Coelho, P.G.: Osteointegrative and microgeometric comparison between micro-blasted and alumina blasting/acid etching on grade II and V titanium alloys (Ti-6Al-4V). J. Mech. Behav. Biomed. Mater. 97, 288–295 (2019)

    Article  Google Scholar 

  46. Zboun, M.; Arısan, V.; Topcuoglu, N.; Kuruoglu, F.; Sener, L.T.; Sarcan, F.: In vitro comparison of titanium surface conditioning via boron-compounds and sand-blasting acid-etching. Surf. Interfaces 21, 100703 (2020)

    Article  Google Scholar 

  47. Inokoshi, M.; Shimizubata, M.; Nozaki, K.; Takagaki, T.; Yoshihara, K.; Minakuchi, S.; Vleugels, J.; Van Meerbeek, B.; Zhang, F.: Impact of sandblasting on the flexural strength of highly translucent zirconia. J. Mech. Behav. Biomed. Mater. 115, 104268 (2021)

    Article  Google Scholar 

  48. Ruff, A.W.; Ives, L.K.: Measurement of solid particle velocity in erosive wear. Wear 35(1), 195–199 (1975)

    Article  Google Scholar 

  49. Bousser, E.: Solid particle erosion mechanisms of protective coatings for aerospace applications. Department of Engineering Physics, POLYTECHNIQUE MONTRÉAL'S INSTITUTIONAL (2013)

  50. Khanouki, H.A: Development of erosion equations for solid particle and liquid droplet impact. PhD Thesis, The University of Tulsa (2015)

  51. Standard, A.S.T.M.: G76, standard test method for conducting erosion tests by solid particle impingement using gas jets. ASTM International, West Conshohocken (2013)

    Google Scholar 

  52. Yang, J.; Zhao, C.; Zhang, Y.; Wang, X.E.; Wang, Y.; Xie, D.: Constitutive models for temperature-, strain rate-and time-dependent behaviors of ionomers in laminated glass. J. Mater. Sci. 58(8), 3608–3624 (2023)

    Article  Google Scholar 

  53. Che, J.; Zhou, T.; Liang, Z.; Wu, J.; Wang, X.: An integrated Johnson-Cook and Zerilli-Armstrong model for material flow behavior of Ti–6Al–4V at high strain rate and elevated temperature. J. Braz. Soc. Mech. Sci. Eng. 40, 1–10 (2018)

    Article  Google Scholar 

  54. Samantaray, D.; Mandal, S.; Borah, U.; Bhaduri, A.K.; Sivaprasad, P.V.: A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater. Sci. Eng., A 526(1–2), 1–6 (2009)

    Article  Google Scholar 

  55. Johnson, G.R: A constitutive model and date for metals subject to large strains, high strain rate and high temperatures. In: Proc. of 7th Int. Symp. on Ballistics, The Hague (1983)

  56. Johnson, G.R.; Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  57. Khan, A.S.; Suh, Y.S.; Kazmi, R.: Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int. J. Plast 20(12), 2233–2248 (2004)

    Article  Google Scholar 

  58. Farrokh, B.; Khan, A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. Plast 25(5), 715–732 (2009)

    Article  Google Scholar 

  59. Khan, A.S.; Zhang, H.; Takacs, L.: Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plast 16(12), 1459–1476 (2000)

    Article  Google Scholar 

  60. Barkoula, N.M.; Karger-Kocsis, J.: Solid particle erosion of unidirectional GF reinforced EP composites with different fiber/matrix adhesion. J. Reinf. Plast. Compos. 21(15), 1377–1388 (2002)

    Article  Google Scholar 

  61. Ravindran, S.; Gandhi, V.; Lawlor, B.; Ravichandran, G.: Mesoscale shock structure in particulate composites. J. Mech. Phys. Solids 174, 105239 (2023)

    Article  Google Scholar 

  62. Najafi, A.; Khoddami, A.; Akbarzadeh, S.: Numerical and experimental investigation of correlation between wear and temperature in dry sliding of polyethylene-zinc oxide nanocomposite. Modares Mech. Eng. 20(10), 2547–2558 (2020)

    Google Scholar 

  63. Chen, Q.; Li, D.Y.: Computer simulation of solid particle erosion. Wear 254(3–4), 203–210 (2003)

    Article  Google Scholar 

  64. Desale, G.R.; Gandhi, B.K.; Jain, S.C.: Effect of erodent properties on erosion wear of ductile type materials. Wear 261(7–8), 914–921 (2006)

    Article  Google Scholar 

  65. Feng, L.; Zhang, Q.; Du, M.; Fan, C.; Zhang, K.: Modeling method and experimental study on the random distribution of abrasive particles in the jet cutting process. Int. J. Adv. Manuf. Technol. 121(5–6), 3173–3191 (2022)

    Article  Google Scholar 

  66. Ballout, Y.A.; Mathis, J.A.; Talia, J.E.: Effect of particle tangential velocity on erosion ripple formation. Wear 184(1), 17–21 (1995)

    Article  Google Scholar 

  67. Wu, W.; Goretta, K.C.; Routbort, J.L.: Erosion of 2014 Al reinforced with SiC or Al2O3 particles. Mater. Sci. Eng., A 151(1), 85–95 (1992)

    Article  Google Scholar 

  68. Chen, L.; Luo, G.; Liu, K.; Ma, J.; Yao, B.; Yan, Y.; Wang, Y.: Bonding of glass-based microfluidic chips at low-or room-temperature in routine laboratory. Sens. Actuators, B Chem. 119(1), 335–344 (2006)

    Article  Google Scholar 

  69. Bararpour, S.M.; Jamshidi Aval, H.; Jamaati, R.; Javidani, M.: Comparison of finite element and smoothed-particle hydrodynamics models in the simulation of hypereutectic Al-Si alloy friction surfacing: calibrations from experiments. Arch. Civ. Mech. Eng. 23(4), 224 (2023)

    Article  Google Scholar 

  70. Bitter, J.G.A.: A study of erosion phenomena part I. Wear 6(1), 5–21 (1963)

    Article  Google Scholar 

  71. Bitter, J.G.A.: A study of erosion phenomena: part II. Wear 6(3), 169–190 (1963)

    Article  Google Scholar 

  72. Wan, M.; Ye, X.Y.; Wen, D.Y.; Zhang, W.H.: Modeling of machining-induced residual stresses. J. Mater. Sci. 54, 1–35 (2019)

    Article  Google Scholar 

  73. Alharbi, N.: Energy-efficient ultrasonic shot peening as post-treatment for SS316L fabricated by laser powder bed fusion. Arab. J. Sci. Eng. 47(7), 9119–9136 (2022)

    Article  Google Scholar 

  74. Sahin, B.; Gov, I.; Kalak, M.; Koca, M.S.; Gov, K.: Surface treatment of AISI 304 stainless steel by GOV (Flow Peening) process. Arab. J. Sci. Eng. 49(2), 1–27 (2023)

    Google Scholar 

  75. Wang, S.; Li, Y.; Yao, M.; Wang, R.: Compressive residual stress introduced by shot peening. J. Mater. Process. Technol. 73(1–3), 64–73 (1998)

    Article  Google Scholar 

  76. Finnie, I.: Erosion of surfaces by solid particles. Wear 3(2), 87–103 (1960)

    Article  Google Scholar 

  77. Neilson, J.H.; Gilchrist, A.: Erosion by a stream of solid particles. Wear 11(2), 111–122 (1968)

    Article  Google Scholar 

  78. Hashish, M: An improved model of erosion by solid particle impact. In: Erosion by Liquid and Solid Impact, Seventh International Conference (p. 66), (1987)

  79. Cao, Z.C.; Wang, M.; Yan, S.; Zhao, C.; Liu, H.: Surface integrity and material removal mechanism in fluid jet polishing of optical glass. J. Mater. Process. Technol. 311, 117798 (2023)

    Article  Google Scholar 

Download references

Funding

This study was funded by the authors. The authors guarantee that there is no grant by other people or organizations.

Author information

Authors and Affiliations

Authors

Contributions

AK (first author) contributed to conceptualization, methodology, software, validation, data curation, writing—original draft, and formal analysis. BM (corresponding author) contributed to review & editing, supervision, and project administration.

Corresponding author

Correspondence to Bijan Mohammadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. They guarantee that there are no conflicts, financial and personal relationships with other people or organizations that could inappropriately influence (bias) our work.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoddami, A., Mohammadi, B. A Novel Simulation Model for Multiple Solid Particle Erosion in Micro-blasting Process of Ti-6Al-4V Dental Implant Alloy Considering Actual Geometry of Impacting Particles. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09058-7

Keywords

Navigation