Skip to main content
Log in

Core-shell LaOCl/LaFeO3 nanofibers with matched impedance for high-efficiency electromagnetic wave absorption

核壳结构LaOCl/LaFeO3纳米纤维的阻抗匹配设计及 其电磁吸波性能研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The widespread applications of electromagnetic (EM) waves in wireless communication and detection may lead to severe EM wave pollution, which drives the urgent need for EM wave absorbents. However, satisfactory impedance matching remains a challenge for the wide bandwidth absorption of one-dimensional core-shell absorbers. To cope with this challenge, in this study, a novel core-shell LaOCl/LaFeO3 nanofiber (NF) is designed and successfully synthesized via electrospinning followed by proper thermal treatment. This unique structure first assembles conductive magnetic LaFeO3 shells and ionic compound LaOCl cores. Benefiting from the synergistic contributions of the dielectric and magnetic loss coupling and impedance matching, the LaOCl/LaFeO3 NFs exhibit a dramatically optimized performance with a minimum reflection loss (RL) of −40.1 dB (at 2.0 mm) and an effective absorption bandwidth (EAB) of 6.4 GHz (at 2.4 mm) under an ultra-low filler loading of 4 wt%. This work provides a promising LaOCl/LaFeO3 NF EM wave absorber and opens up a new avenue to tune the impedance match by the composition and microstructure design.

摘要

电磁波在无线通信等领域的广泛应用导致了严重的电磁污染, 迫切需要研发高性能电磁波吸收材料. 本文针对吸波材料阻抗不匹配 等关键问题, 设计并成功制备了新型核壳LaOCl/LaFeO3纳米纤维电磁 波吸收剂. 这种独特的一维多级结构由导电LaFeO3磁性壳层和离子化 合物LaOCl核层组成. 基于介电-磁损耗耦合和阻抗匹配的协同作用, LaOCl/LaFeO3纳米纤维在超低负载条件下(4wt%),表现出 −40.1dB(2.0 mm)的反射损耗和6.4GHz(2.4mm)的有效吸收带宽.该 工作提出了一种新型LaOCl/LaFeO3纳米纤维吸波材料, 并为阻抗匹配 调控和电磁吸波性能优化开辟了新策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang L, Gu W, Wu Y, et al. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv Mater, 2022, 34: 2106195

    Article  CAS  Google Scholar 

  2. Li Q, Zhang Z, Qi L, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv Sci, 2019, 6: 1801057

    Article  Google Scholar 

  3. Zhao Y, Ji G. Multi-spectrum bands compatibility: New trends in stealth materials research. Sci China Mater, 2022, 65: 2936–2941

    Article  Google Scholar 

  4. Xie S, Ji Z, Zhu L, et al. Recent progress in electromagnetic wave absorption building materials. J Building Eng, 2020, 27: 100963

    Article  Google Scholar 

  5. Yu J, Gu W, Zhao H, et al. Lightweight, flexible and freestanding PVA/PEDOT:PSS/Ag NWs film for high-performance electromagnetic interference shielding. Sci China Mater, 2021, 64: 1723–1732

    Article  CAS  Google Scholar 

  6. Yun T, Kim H, Iqbal A, et al. Electromagnetic shielding of monolayer MXene assemblies. Adv Mater, 2020, 32: 1906769

    Article  CAS  Google Scholar 

  7. Yang H, Zhang S, Yang H, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J Adv Ceram, 2021, 10: 885–932

    Article  CAS  Google Scholar 

  8. Qiao J, Zhang X, Liu C, et al. High-permittivity Sb2S3 single-crystal nanorods as a brand-new choice for electromagnetic wave absorption. Sci China Mater, 2021, 64: 1733–1741

    Article  CAS  Google Scholar 

  9. Ying M, Zhao R, Hu X, et al. Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew Chem Int Ed, 2022, 61

  10. Zhang W, Xiang H, Dai FZ, et al. Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). J Adv Ceram, 2022, 11: 545–555

    Article  CAS  Google Scholar 

  11. Zeng X, Cheng X, Yu R, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168: 606–623

    Article  CAS  Google Scholar 

  12. Wu Z, Pei K, Xing L, et al. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Funct Mater, 2019, 29: 1901448

    Article  Google Scholar 

  13. Li CJ, Wang B, Wang JN. Magnetic and microwave absorbing properties of electrospun Ba(1−x)LaxFe12O19 nanofibers. J Magn Magn Mater, 2012, 324: 1305–1311

    Article  CAS  Google Scholar 

  14. Bhattacharjee Y, Bose S. Core-shell nanomaterials for microwave absorption and electromagnetic interference shielding: A review. ACS Appl Nano Mater, 2021, 4: 949–972

    Article  CAS  Google Scholar 

  15. Cao M, Wang X, Zhang M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater, 2019, 29: 1807398

    Article  Google Scholar 

  16. Han C, Zhang M, Cao WQ, et al. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon, 2021, 171: 953–962

    Article  CAS  Google Scholar 

  17. Che R, Peng LM, Duan X, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater, 2004, 16: 401–405

    Article  CAS  Google Scholar 

  18. Che RC, Zhi CY, Liang CY, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl Phys Lett, 2006, 88: 033105

    Article  Google Scholar 

  19. Wu Z, Yang Z, Pei K, et al. Dandelion-like carbon nanotube assembly embedded with closely separated Co nanoparticles for high-performance microwave absorption materials. Nanoscale, 2020, 12: 10149–10157

    Article  CAS  Google Scholar 

  20. Yan SJ, Xu CY, Jiang JT, et al. Strong dual-frequency electromagnetic absorption in Ku-band of C@FeNi3 core/shell structured microchains with negative permeability. J Magn Magn Mater, 2014, 349: 159–164

    Article  CAS  Google Scholar 

  21. Xiang J, Li J, Zhang X, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A, 2014, 2: 16905–16914

    Article  CAS  Google Scholar 

  22. Xu Z, Du Y, Liu D, et al. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl Mater Interfaces, 2019, 11: 4268–4277

    Article  CAS  Google Scholar 

  23. Han M, Yin X, Hou Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl Mater Interfaces, 2017, 9: 11803–11810

    Article  CAS  Google Scholar 

  24. Ma J, Zhao B, Xiang H, et al. High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption. J Adv Ceram, 2022, 11: 754–768

    Article  CAS  Google Scholar 

  25. Lv H, Ji G, Liu W, et al. Achieving hierarchical hollow carbon@-Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C, 2015, 3: 10232–10241

    Article  CAS  Google Scholar 

  26. Liang Q, Jin J, Liu C, et al. Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity. J Alloys Compd, 2017, 709: 542–548

    Article  CAS  Google Scholar 

  27. Xu Y, Ding L, Wen Z, et al. Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor. Appl Surf Sci, 2020, 511: 145571

    Article  CAS  Google Scholar 

  28. Acharya S, Mondal J, Ghosh S, et al. Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater Lett, 2010, 64: 415–418

    Article  CAS  Google Scholar 

  29. Abrahams SC, Barns RL, Bernstein JL. Ferroelastic effect in Lanthanum orthoferrite. Solid State Commun, 1972, 10: 379–381

    Article  CAS  Google Scholar 

  30. Rearick TM, Catchen GL, Adams JM. Combined magnetic-dipole and electric-quadrupole hyperfine interactions in rare-earth orthoferrite ceramics. Phys Rev B, 1993, 48: 224–238

    Article  CAS  Google Scholar 

  31. Wang D, Gong M. Surface and shape anisotropy effects in LaFeO3 nanoparticles. J Appl Phys, 2011, 109: 114304

    Article  Google Scholar 

  32. Niwa E, Sato T, Watanabe Y, et al. Dependence of crystal symmetry, electrical conduction property and electronic structure of LnFeO3 (Ln: La, Pr, Nd, Sm) on kinds of Ln3+. J Ceram Soc Jpn, 2015, 123: 501–506

    Article  CAS  Google Scholar 

  33. Idrees M, Nadeem M, Atif M, et al. Origin of colossal dielectric response in LaFeO3. Acta Mater, 2011, 59: 1338–1345

    Article  CAS  Google Scholar 

  34. Huang L, Cheng L, Pan S, et al. Effects of Sr doping on the structure, magnetic properties and microwave absorption properties of LaFeO3 nanoparticles. Ceramics Int, 2020, 46: 27352–27361

    Article  CAS  Google Scholar 

  35. Wu Z, Cheng HW, Jin C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater, 2022, 34: 2107538

    Article  CAS  Google Scholar 

  36. Jonscher AK. Dielectric relaxation in solids. J Phys D-Appl Phys, 1999, 32: R57–R70

    Article  CAS  Google Scholar 

  37. Li K, Xu J, Yan X, et al. The origin of the strong microwave absorption in black TiO2. Appl Phys Lett, 2016, 108: 183102

    Article  Google Scholar 

  38. Shwetha G, Kanchana V, Yedukondalu N, et al. Ab initio study of scintillating lanthanide oxyhalide host materials. Mater Res Express, 2015, 2: 105901

    Article  Google Scholar 

  39. Zhao B, Li Y, Ji H, et al. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon, 2021, 176: 411–420

    Article  CAS  Google Scholar 

  40. Wen C, Li X, Zhang R, et al. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano, 2022, 16: 1150–1159

    Article  CAS  Google Scholar 

  41. Zhang W, Zhao B, Xiang H, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. J Adv Ceram, 2021, 10: 62–77

    Article  CAS  Google Scholar 

  42. Zhao B, Guo X, Zhao W, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces, 2016, 8: 28917–28925

    Article  CAS  Google Scholar 

  43. Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  45. Lejaeghere K, Van Speybroeck V, Van Oost G, et al. Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci, 2014, 39: 1–24

    Article  CAS  Google Scholar 

  46. Pack JD, Monkhorst HJ. “Special points for Brillouin-zone integrations”—A reply. Phys Rev B, 1977, 16: 1748–1749

    Article  Google Scholar 

  47. Pfrommer BG, Côté M, Louie SG, et al. Relaxation of crystals with the quasi-Newton method. J Comput Phys, 1997, 131: 233–240

    Article  CAS  Google Scholar 

  48. Segall MD, Shah R, Pickard CJ, et al. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B, 1996, 54: 16317–16320

    Article  CAS  Google Scholar 

  49. Cho JS, Hong YJ, Kang YC. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano, 2015, 9: 4026–4035

    Article  CAS  Google Scholar 

  50. Niu C, Meng J, Wang X, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun, 2015, 6: 7402

    Article  Google Scholar 

  51. Donnay JDH, Harker D. A new law of crystal morphology extending the Law of Bravais. Am Mineral, 1937, 22: 446–467

    CAS  Google Scholar 

  52. Chen H, Zhao B, Zhao Z, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J Mater Sci Tech, 2020, 47: 216–222

    Article  CAS  Google Scholar 

  53. Zhou Y, Zhao B, Chen H, et al. Electromagnetic wave absorbing properties of TMCs (TM = Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. J Mater Sci Tech, 2021, 74: 105–118

    Article  CAS  Google Scholar 

  54. Lv H, Yang Z, Xu H, et al. An electrical switch-driven flexible electromagnetic absorber. Adv Funct Mater, 2019, 30: 1907251

    Article  Google Scholar 

  55. Liu Q, Cao Q, Bi H, et al. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater, 2016, 28: 486–490

    Article  CAS  Google Scholar 

  56. Qing Y, Zhou W, Luo F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics Int, 2016, 42: 16412–16416

    Article  CAS  Google Scholar 

  57. Sun H, Che R, You X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater, 2014, 26: 8120–8125

    Article  CAS  Google Scholar 

  58. Zhao B, Li Y, Zeng Q, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small, 2020, 16: 2003502

    Article  CAS  Google Scholar 

  59. Lv H, Yang Z, Liu B, et al. A flexible electromagnetic wave-electricity harvester. Nat Commun, 2021, 12: 834

    Article  CAS  Google Scholar 

  60. Cao MS, Song WL, Hou ZL, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48: 788–796

    Article  CAS  Google Scholar 

  61. Wen B, Cao MS, Hou ZL, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65: 124–139

    Article  CAS  Google Scholar 

  62. Ding D, Wang Y, Li X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111: 722–732

    Article  CAS  Google Scholar 

  63. Zhao B, Hamidinejad M, Wang S, et al. Advances in electromagnetic shielding properties of composite foams. J Mater Chem A, 2021, 9: 8896–8949

    Article  CAS  Google Scholar 

  64. Yuchang Q, Qinlong W, Fa L, et al. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J Mater Chem C, 2016, 4: 4853–4862

    Article  Google Scholar 

  65. Zhang M, Han C, Cao WQ, et al. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett, 2020, 13: 27

    Article  CAS  Google Scholar 

  66. Li Y, Qing Y, Zhou Y, et al. Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption. Compos Part B-Eng, 2021, 213: 108731

    Article  CAS  Google Scholar 

  67. Zhao B, Shao G, Fan B, et al. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J Mater Chem A, 2015, 3: 10345–10352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52102068, 52073156, and 52202058), the State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University (KF202112), the Science and Technology on Advanced Functional Composite Laboratory (6142906200509), the Natural Science Foundation of Jiangsu Province (20KJB430017) and NUPTSF (NY219162), the Key Science and Technology Program of Henan Province (212102210591), the Foundation for University Youth Key Teachers of Henan Province (2020GGJS170), and the Support Program for Scientific and Technological Innovation Talents of Higher Education in Henan Province (21HASTIT004).

Author information

Authors and Affiliations

Authors

Contributions

Xing Y and Zhao B were responsible for the experimental design and conceptualization; Fan Y and Yan Z performed the experiments and characterization; Xing Y, Zhao B, and Huang Y contributed to the data analyses; Xing Y wrote the paper with support from Zhao B and Pan W. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Biao Zhao  (赵彪) or Wei Pan  (潘伟).

Additional information

Supplementary information

Supporting data are available in the online version of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Yan Xing obtained her PhD degree in materials science and engineering from Tsinghua University in 2019. Currently, she is a lecturer at the School of Science, Nanjing University of Posts & Telecommunications. Her research interests include the synthesis and multifunctional applications of nanofibers, electromagnetic wave absorption materials, and high-entropy ceramic fibers.

Biao Zhao is currently an associate researcher at the School of Microelectronics, Fudan University. During 2016–2018, he was trained as a postdoctoral fellow at the University of Toronto. His main interests focus on the synthesis and characterization of hollow honeycomb structure absorbing materials, carbon-based elastic absorbers, magnetic composite aerogels, flexible wearable electromagnetic shielding materials, and transparent conductive shielding materials.

Wei Pan is a professor at the School of Materials Science and Engineering, Tsinghua University, China. He received his PhD degree from Nagoya University (1990). Prof Pan’s research interests include advanced ceramics processing, nanofibers and devices, low thermal conductive materials and thermal barrier coating, and oxide ion conductive materials.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Fan, Y., Yan, Z. et al. Core-shell LaOCl/LaFeO3 nanofibers with matched impedance for high-efficiency electromagnetic wave absorption. Sci. China Mater. 66, 1587–1596 (2023). https://doi.org/10.1007/s40843-022-2264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2264-9

Keywords

Navigation