Skip to main content
Log in

Multi-spectrum bands compatibility: New trends in stealth materials research

多频谱兼容性: 隐身材料研究的新方向

  • Perspective
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

本文首先概括了上世纪隐身技术雏形、 隐身参数计算机理、 探测技术等的发展历史以及吸波材料的常见分类. 然后指出材料合成中多注重性能均衡的复合设计, 并着眼于反射损耗与阻抗匹配参数等性能调控方式, 如微观组分调节、 形貌设计等. 近十年来, 随着应用需求的提高, 电磁波吸收为主的隐身材料趋向于低频、 宽频的应用需求, 外场调控、 阻抗渐变等设计思路引起关注. 而随着航空航天、 地面装备等实际需求的增加, 电磁波吸收材料逐渐向红外/可见光等多频谱兼容、 服役性能等方向发展. 如何实现红外发射率可调、 可见光透明或伪装、 耐苛刻环境成为了亟待解决的热点问题.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nicolson AM, Ross GF. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas, 1970, 19: 377–382

    Article  Google Scholar 

  2. Weir WB. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE, 1974, 62: 33–36

    Article  Google Scholar 

  3. Delfini A, Pastore R, Piergentili F, et al. Experimental reflection evaluation for attitude monitoring of space orbiting systems with NRL arch method. Appl Sci, 2021, 11: 8632

    Article  CAS  Google Scholar 

  4. Zhao Z, Li W, Zeng Y, et al. Structure engineering of 2D materials toward magnetism modulation. Small Struct, 2021, 2: 2100077

    Article  CAS  Google Scholar 

  5. Zhou Y, Zhou W, Ni C, et al. “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem Eng J, 2022, 430: 132621

    Article  CAS  Google Scholar 

  6. Guo Y, Wang D, Wang J, et al. Hierarchical HCF@NC/Co derived from hollow loofah fiber anchored with metal-organic frameworks for highly efficient microwave absorption. ACS Appl Mater Interfaces, 2022, 14: 2038–2050

    Article  CAS  Google Scholar 

  7. Huang W, Gao W, Zuo S, et al. Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces. J Mater Chem A, 2022, 10: 1290–1298

    Article  CAS  Google Scholar 

  8. Yu Y, Fang Y, Hu Q, et al. Hollow MOF-derived CoNi/C composites as effective electromagnetic absorbers in the X-band and Ku-band. J Mater Chem C, 2022, 10: 983–993

    Article  CAS  Google Scholar 

  9. Cao M, Wang X, Cao W, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small, 2018, 14: 1800987

    Article  Google Scholar 

  10. Xu J, Liu L, Zhang X, et al. Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chem Eng J, 2021, 425: 131700

    Article  CAS  Google Scholar 

  11. Xu J, Liu M, Zhang X, et al. Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl Phys Rev, 2022, 9: 011402

    Article  CAS  Google Scholar 

  12. Sun G, Dong B, Cao M, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater, 2011, 23: 1587–1593

    Article  CAS  Google Scholar 

  13. Du Y, Liu W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6: 12997–13006

    Article  CAS  Google Scholar 

  14. Cheng Y, Cao J, Li Y, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption. ACS Sustain Chem Eng, 2017, 6: 1427–1435

    Article  Google Scholar 

  15. Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano, 2021, 15: 6622–6632

    Article  CAS  Google Scholar 

  16. Xu R, Xu D, Zeng Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem Eng J, 2022, 427: 130796

    Article  CAS  Google Scholar 

  17. Liang L, Gu W, Wu Y, et al. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv Mater, 2022, 34: 2106195

    Article  CAS  Google Scholar 

  18. Lv H, Yang Z, Wang PL, et al. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv Mater, 2018, 30: 1706343

    Article  Google Scholar 

  19. Zuo Y, Su X, Li X, et al. Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon, 2020, 167: 62–74

    Article  CAS  Google Scholar 

  20. Li X, Yin X, Song C, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater, 2018, 28: 1803938

    Article  Google Scholar 

  21. Yang K, Cui Y, Liu Z, et al. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem Eng J, 2021, 426: 131308

    Article  CAS  Google Scholar 

  22. Zhang X, Shi Y, Xu J, et al. Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett, 2021, 14: 27

    Article  CAS  Google Scholar 

  23. Li B, Xu J, Xu H, et al. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption. Chem Eng J, 2022, 435: 134846

    Article  CAS  Google Scholar 

  24. Wang F, Gu W, Chen J, et al. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res, 2022, 15: 3720–3728

    Article  CAS  Google Scholar 

  25. Quan B, Shi W, Ong SJH, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv Funct Mater, 2019, 29: 1901236

    Article  Google Scholar 

  26. Lou Z, Wang Q, Kara UI, et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett, 2022, 14: 11

    Article  CAS  Google Scholar 

  27. Guo R, Su D, Chen F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption. ACS Appl Mater Interfaces, 2022, 14: 3084–3094

    Article  CAS  Google Scholar 

  28. Zhao H, Cheng Y, Zhang Z, et al. Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos Part B-Eng, 2020, 196: 108119

    Article  CAS  Google Scholar 

  29. Zhang M, Han C, Cao WQ, et al. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett, 2020, 13: 27

    Article  CAS  Google Scholar 

  30. Sun Y, Chang H, Hu J, et al. Large-scale multifunctional carbon nanotube thin film as effective mid-infrared radiation modulator with long-term stability. Adv Opt Mater, 2020, 9: 2001216

    Article  Google Scholar 

  31. Yu Z, Yao Y, Yao J, et al. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J Mater Chem A, 2017, 5: 6019–6024

    Article  CAS  Google Scholar 

  32. Luo C, Jiao T, Gu J, et al. Graphene shield by SiBCN ceramic: A promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl Mater Interfaces, 2018, 10: 39307–39318

    Article  CAS  Google Scholar 

  33. Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science, 2021, 372: eabg1487

    Article  CAS  Google Scholar 

  34. Shi X, Gu D, Li Y, et al. Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube. Optics Laser Tech, 2021, 138: 106917

    Article  CAS  Google Scholar 

  35. Lv H, Yang Z, Ong SJH, et al. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv Funct Mater, 2019, 29: 1900163

    Article  Google Scholar 

  36. Yang X, Duan Y, Li S, et al. Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett, 2021, 14: 28

    Article  Google Scholar 

  37. Wang J, Jia Z, Liu X, et al. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett, 2021, 13: 175

    Article  CAS  Google Scholar 

  38. Xu J, Zhang X, Yuan H, et al. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon, 2020, 159: 357–365

    Article  CAS  Google Scholar 

  39. Zhang X, Zhang X, Yuan H, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem Eng J, 2020, 383: 123208

    Article  CAS  Google Scholar 

  40. Zhang C, Long C, Yin S, et al. Graphene-based anisotropic polarization meta-filter. Mater Des, 2021, 206: 109768

    Article  CAS  Google Scholar 

  41. Wang G, Zhao Y, Yang F, et al. Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett, 2022, 14: 65

    Article  Google Scholar 

  42. Zhu X, Dong Y, Xiang Z, et al. Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon, 2021, 182: 254–264

    Article  CAS  Google Scholar 

  43. Xu J, Zhang X, Zhao Z, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small, 2021, 17: 2102032

    Article  CAS  Google Scholar 

  44. Zhang M, Cao MS, Shu JC, et al. Electromagnetic absorber converting radiation for multifunction. Mater Sci Eng-R-Rep, 2021, 145: 100627

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51971111), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_3555) and the Foundation of National Key Laboratory (6142908-KQ111501114).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhao Y wrote the manuscript with the help of Ji G. Ji G provided important feedback and information.

Corresponding author

Correspondence to Guangbin Ji  (姬广斌).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yue Zhao is a PhD candidate at the College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics. His research focuses on the electromagnetic wave absorption/shielding materials and multi-functional nano/micro-materials synthesis. He received a B.Eng. degree in applied chemistry from Nanjing University of Aeronautics and Astronautics.

Guangbin Ji is currently a full professor at the College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics. He is an editorial board member of Journal of Colloid and Interface Science, Current Nanoscience, and Nanomaterials. His major research interests include microwave absorption/shielding and magnetic materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Ji, G. Multi-spectrum bands compatibility: New trends in stealth materials research. Sci. China Mater. 65, 2936–2941 (2022). https://doi.org/10.1007/s40843-022-2074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2074-5

Navigation