Skip to main content
Log in

Trap-mediated bipolar charge transport in NiO/Ga2O3 p+-n heterojunction power diodes

NiO/Ga2O3 p+-n异质结功率二极管中陷阱介导双极型电荷输运研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The construction of p-NiO/n-Ga2O3 heterojunction becomes a popular alternative to overcome the technological bottleneck of p-type Ga2O3 for developing bipolar power devices for practical applications, whereas the identification of performance-limiting traps and the bipolar transport dynamics are still not exploited yet. To this end, the fundamental correlation of carrier transport, trapping and recombination kinetics in NiO/β-Ga2O3 p+-n heterojunction power diodes has been investigated. The quantitative modeling of the temperature-dependent current-voltage characteristics indicates that the modified Shockley-Read-Hall recombination mediated by majority carrier trap states with an activation energy of 0.64 eV dominates the trap-assisted tunneling process in the forward subthreshold conduction regime, while the minority carrier diffusion with near-unity ideality factors is overwhelming at the bias over the turn-on voltage. The leakage mechanism at high reverse biases is governed by the Poole-Frenkel emissions through the β-Ga2O3 bulk traps with a barrier height of 0.75 eV, which is supported by the identification of majority bulk traps with the energy level of EC − 0.75 eV through the isothermal capacitance transient spectroscopic analysis. These findings bridge the knowledge gap between bipolar charge transport and deep-level trap behaviors in Ga2O3, which is crucial to understand the reliability of Ga2O3 bipolar power rectifiers.

摘要

构筑NiO/Ga2O3 p+-n异质结是克服Ga2O3 p型掺杂瓶颈从而实现双极型功率电子器件的有效途径, 然而限制器件性能的缺陷行为与双 极型电荷输运等物理机制尚不明晰. 本论文研究了NiO/Ga2O3 p+-n异质结中陷阱介导的载流子输运、 俘获和复合动力学之间的内在关联特性. 变温电流-电压特性的量化分析表明, 在正偏亚阈值区, 陷阱辅助隧穿占据主导地位, 符合多数载流子陷阱介导的Shockley-Read-Hall复合模型, 其陷阱激活能为0.64 eV, 与深能级瞬态谱测试的陷阱能级位置(EC − 0.67 eV)非常吻合; 当正向偏压大于器件开启电压时, 器件输运特性由少数载流子扩散所主导, 器件理想因子接近于1. 在反向偏置的高场作用下, 器件漏电机制则由β-Ga2O3体材料中的陷阱引起的Poole-Frenkel (PF)发射所导致. PF发射的势垒高度为0.75 eV, 与等温变频深能级瞬态谱测得的陷阱能级位置(EC − 0.75 eV)相一致. 这一工作有助于建立NiO/Ga2O3 p+-n异质结中双极型电荷输运和深能级缺陷行为间的内在关联, 对理解和发展Ga2O3双极型功率整流器件具有重要的参考价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearton SJ, Yang J, Cary Iv PH, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5: 011301

    Article  Google Scholar 

  2. Zhang J, Shi J, Qi DC, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater, 2020, 8: 020906

    Article  CAS  Google Scholar 

  3. Hao W, He Q, Zhou X, et al. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability. In: 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Vancouver, BC, 2022, 105–108

  4. Zhou X, Liu Q, Hao W, et al. Normally-off β-Ga2O3 power heterojunction field-effect-transistor realized by p-NiO and recessed-gate. In: 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Vancouver, BC, 2022, 101–104

  5. Zhang J, Dong P, Dang K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat Commun, 2022, 13: 3900

    Article  CAS  Google Scholar 

  6. Gong H, Chen X, Xu Y, et al. Band alignment and interface recombination in NiO/β-Ga2O3 type-II p-n heterojunctions. IEEE Trans Electron Devices, 2020, 67: 3341–3347

    Article  CAS  Google Scholar 

  7. Gong HH, Chen XH, Xu Y, et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode. Appl Phys Lett, 2020, 117: 022104

    Article  CAS  Google Scholar 

  8. Kokubun Y, Kubo S, Nakagomi S. All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3. Appl Phys Express, 2016, 9: 091101

    Article  Google Scholar 

  9. Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 2017, 111: 222104

    Article  Google Scholar 

  10. Gong HH, Yu XX, Xu Y, et al. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl Phys Lett, 2021, 118: 202102

    Article  CAS  Google Scholar 

  11. Gong H, Zhou F, Xu W, et al. 1.37 kV/12 A NiO/β-Ga2O3 heterojunction diode with nanosecond reverse recovery and rugged surge-current capability. IEEE Trans Power Electron, 2021, 36: 12213–12217

    Article  Google Scholar 

  12. Schroder DK. Semiconductor Material and Device Characterization. New York: John Wiley & Sons, 2005, 151–165

    Book  Google Scholar 

  13. De Santi C, Fregolent M, Buffolo M, et al. Carrier capture kinetics, deep levels, and isolation properties of β-Ga2O3 Schottky-barrier diodes damaged by nitrogen implantation. Appl Phys Lett, 2020, 117: 262108

    Article  CAS  Google Scholar 

  14. McGlone JF, Xia Z, Joishi C, et al. Identification of critical buffer traps in Si δ-doped β-Ga2O3 MESFETs. Appl Phys Lett, 2019, 115: 153501

    Article  Google Scholar 

  15. Mcglone JF, Xia Z, Zhang Y, et al. Trapping effects in Si δ-doped β-Ga2O3 MESFETs on an Fe-doped β-Ga2O3 substrate. IEEE Electron Device Lett, 2018, 39: 1042–1045

    Article  CAS  Google Scholar 

  16. Zhang KHL, Wu R, Tang F, et al. Electronic structure and band alignment at the NiO and SrTiO3 p-n heterojunctions. ACS Appl Mater Interfaces, 2017, 9: 26549–26555

    Article  CAS  Google Scholar 

  17. Schein FL, von Wenckstern H, Grundmann M. Transparent p-CuI/n-ZnO heterojunction diodes. Appl Phys Lett, 2013, 102: 092109

    Article  Google Scholar 

  18. Grundmann M, Klüpfel F, Karsthof R, et al. Oxide bipolar electronics: Materials, devices and circuits. J Phys D-Appl Phys, 2016, 49: 213001

    Article  Google Scholar 

  19. Kaushik JK, Balakrishnan VR, Panwar BS, et al. On the origin of kink effect in current-voltage characteristics of AlGaN/GaN high electron mobility transistors. IEEE Trans Electron Devices, 2013, 60: 3351–3357

    Article  CAS  Google Scholar 

  20. Tress W, Corvers S, Leo K, et al. Investigation of driving forces for charge extraction in organic solar cells: Transient photocurrent measurements on solar cells showing S-shaped current-voltage characteristics. Adv Energy Mater, 2013, 3: 873–880

    Article  CAS  Google Scholar 

  21. Wang Y, Gong H, Lv Y, et al. 2.41 kV vertical p-NiO/n-Ga2O3 heterojunction diodes with a record Baliga’s figure-of-merit of 5.18 GW/cm2. IEEE Trans Power Electron, 2022, 37: 3743–3746

    Article  Google Scholar 

  22. Palmer DW. Characterisation of semiconductor heterostructures by capacitance methods. Microelectron J, 1999, 30: 665–672

    Article  CAS  Google Scholar 

  23. Passlack M, Schubert EF, Hobson WS, et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys, 1995, 77: 686–693

    Article  CAS  Google Scholar 

  24. Rao KV, Smakula A. Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals. J Appl Phys, 1965, 36: 2031–2038

    Article  CAS  Google Scholar 

  25. Mandurrino M, Goano M, Vallone M, et al. Semiclassical simulation of trap-assisted tunneling in GaN-based light-emitting diodes. J Comput Electron, 2015, 14: 444–455

    Article  CAS  Google Scholar 

  26. Alialy S, Tecimer H, Uslu H, et al. A comparative study on electrical characteristics of Au/N-Si Schottky diodes, with and without Bi-doped PVA interfacial layer in dark and under illumination at room temperature. J Nanomed Nanotechnol, 2017, 04: 1000167

    Article  Google Scholar 

  27. Zhu D, Xu J, Noemaun AN, et al. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett, 2009, 94: 081113

    Article  Google Scholar 

  28. Hu Z, Nomoto K, Song B, et al. Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown. Appl Phys Lett, 2015, 107: 243501

    Article  Google Scholar 

  29. Grundmann M, Karsthof R, von Wenckstern H. Interface recombination current in type II heterostructure bipolar diodes. ACS Appl Mater Interfaces, 2014, 6: 14785–14789

    Article  CAS  Google Scholar 

  30. Yan D, Lu H, Chen D, et al. Forward tunneling current in GaN-based blue light-emitting diodes. Appl Phys Lett, 2010, 96: 083504

    Article  Google Scholar 

  31. Ma N, Tanen N, Verma A, et al. Intrinsic electron mobility limits in β-Ga2O3. Appl Phys Lett, 2016, 109: 212101

    Article  Google Scholar 

  32. Auf der Maur M, Galler B, Pietzonka I, et al. Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl Phys Lett, 2014, 105: 133504

    Article  Google Scholar 

  33. Bozyigit D, Lin WMM, Yazdani N, et al. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells. Nat Commun, 2015, 6: 6180

    Article  CAS  Google Scholar 

  34. Xu Y, Chen X, Zhou D, et al. Carrier transport and gain mechanisms in β-Ga2O3-based metal-semiconductor-metal solar-blind Schottky photodetectors. IEEE Trans Electron Devices, 2019, 66: 2276–2281

    Article  Google Scholar 

  35. Rathkanthiwar S, Kalra A, Solanke SV, et al. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J Appl Phys, 2017, 121: 164502

    Article  Google Scholar 

  36. Rao PK, Park B, Lee ST, et al. Analysis of leakage current mechanisms in Pt/Au Schottky contact on Ga-polarity GaN by Frenkel-Poole emission and deep level studies. J Appl Phys, 2011, 110: 013716

    Article  Google Scholar 

  37. Greco G, Fiorenza P, Spera M, et al. Forward and reverse current transport mechanisms in tungsten carbide Schottky contacts on Al-GaN/GaN heterostructures. J Appl Phys, 2021, 129: 234501

    Article  CAS  Google Scholar 

  38. Tomer D, Rajput S, Hudy LJ, et al. Carrier transport in reverse-biased graphene/semiconductor Schottky junctions. Appl Phys Lett, 2015, 106: 173510

    Article  Google Scholar 

  39. Liu B, Gu M, Liu X. Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles. Appl Phys Lett, 2007, 91: 172102

    Article  Google Scholar 

  40. Rebien M, Henrion W, Hong M, et al. Optical properties of gallium oxide thin films. Appl Phys Lett, 2002, 81: 250–252

    Article  CAS  Google Scholar 

  41. Wang Z, Chen X, Ren FF, et al. Deep-level defects in gallium oxide. J Phys D-Appl Phys, 2021, 54: 043002

    Article  CAS  Google Scholar 

  42. Okushi H, Tokumaru Y. Isothermal capacitance transient spectroscopy for determination of deep level parameters. Jpn J Appl Phys, 1980, 19: L335–L338

    Article  CAS  Google Scholar 

  43. Lee J, Flitsiyan E, Chernyak L, et al. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length. Appl Phys Lett, 2018, 112: 082104

    Article  Google Scholar 

  44. Yakimov EB, Polyakov AY, Smirnov NB, et al. Diffusion length of non-equilibrium minority charge carriers in β-Ga2O3 measured by electron beam induced current. J Appl Phys, 2018, 123: 185704

    Article  Google Scholar 

  45. Polyakov AY, Smirnov NB, Shchemerov IV, et al. Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si. APL Mater, 2018, 6: 096102

    Article  Google Scholar 

  46. Coelho AVP, Adam MC, Boudinov H. Distinguishing bulk traps and interface states in deep-level transient spectroscopy. J Phys D-Appl Phys, 2011, 44: 305303

    Article  Google Scholar 

  47. Ingebrigtsen ME, Varley JB, Kuznetsov AY, et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 2018, 112: 042104

    Article  Google Scholar 

  48. Zimmermann C, Frodason YK, Barnard AW, et al. Ti- and Fe-related charge transition levels in β-Ga2O3. Appl Phys Lett, 2020, 116: 072101

    Article  CAS  Google Scholar 

  49. Farzana E, Ahmadi E, Speck JS, et al. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy. J Appl Phys, 2018, 123: 161410

    Article  Google Scholar 

  50. Zhang Z, Farzana E, Arehart AR, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 2016, 108: 052105

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFB3605400), the State Key Research and Development Project of Guangdong (2020B010174002), and the National Natural Science Foundation of China (62234007, U21A20503 and U21A2071).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang Z performed the device fabrication and characterizations; Wang Z and Ye J analyzed the results and wrote the paper. All authors contributed to the discussion and revised the manuscript.

Corresponding author

Correspondence to Jiandong Ye  (叶建东).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Zhengpeng Wang is a PhD candidate at the School of Electronic Science and Engineering, Nanjing University, China. His research is focusing on the power device physics and defect engineering.

Jiandong Ye holds the full professorship of the School of Electronic Science and Engineering at Nanjing University, China. He is engaged in the material, physics and devices of wide-bandgap semiconductors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gong, HH., Yu, XX. et al. Trap-mediated bipolar charge transport in NiO/Ga2O3 p+-n heterojunction power diodes. Sci. China Mater. 66, 1157–1164 (2023). https://doi.org/10.1007/s40843-022-2244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2244-y

Keywords

Navigation