Skip to main content
Log in

Semiclassical simulation of trap-assisted tunneling in GaN-based light-emitting diodes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present a combined theoretical, numerical and experimental investigation on trap-assisted tunneling (TAT) in the subthreshold regime of III-nitride-based light-emitting diodes (LEDs). Starting from the basic formulation of the TAT models provided by Hurkx and Schenk, we discuss the derivation of a detailed approach based on both multiphonon and elastic nonlocal processes. A sensitivity study conducted over the main trap- and phonon-related physical parameters of this nonlocal TAT model confirms the importance of tunneling assisted by lattice defects on the LED electrical behavior in the low-medium forward bias range. Comparisons with measured temperature-dependent electrical characteristics \(I(V;T)\) of a single quantum well LED grown on a highly conductive SiC substrate demonstrate that \(I(V;T)\) can be accurately reproduced in the range between 200 and 400 K by implementing the nonlocal model for TAT processes via traps in the electron-blocking and spacer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chitnis, A., Kumar, A., Shatalov, M., Adivarahan, V., Lunev, A., Yang, J.W., Simin, G., Khan, M.A.: High-quality p-n junctions with quaternary AlInGaN/InGaN quantum wells. Appl. Phys. Lett. 77(23), 3800–3802 (2000). doi:10.1063/1.1331084

    Article  Google Scholar 

  2. Huang, S., Xian, Y., Fan, B., Zheng, Z., Chen, Z., Jia, W., Jiang, H., Wang, G.: Contrary luminescence behaviors of InGaN/GaN light emitting diodes caused by carrier tunneling leakage. J. Appl. Phys. 110(6), 064511 (2011). doi:10.1063/1.3642955

    Article  Google Scholar 

  3. Lee, J.M., Kim, S.B.: Analysis of current components and estimation of internal quantum efficiency in light-emitting diodes. IEEE Trans. Electron Devices 58(9), 3053–3057 (2011). doi:10.1109/TED.2011.2158826

    Article  Google Scholar 

  4. Mandurrino, M., Verzellesi, G., Goano, M., Vallone, M., Bertazzi, F., Ghione, G., Meneghini, M., Meneghesso, G., Zanoni, E.: Trap-assisted tunneling in InGaN/GaN LEDs: experiments and physics-based simulation. In: 14th International conference on numerical simulation of optoelectronic devices (NUSOD 2014), pp. 13–14. Palma de Mallorca, Spain (2014). doi:10.1109/NUSOD.2014.6935332

  5. Mandurrino, M., Verzellesi, G., Goano, M., Vallone, M., Bertazzi, F., Ghione, G., Meneghini, M., Meneghesso, G., Zanoni, E.: Physics-based modeling and experimental implications of trap-assisted tunneling in InGaN/GaN light-emitting diodes. Phys. Status Solidi A 212 (2015). doi:10.1002/pssa.201431743

  6. Yajima, T., Esaki, L.: Excess noise in narrow germanium p-n junctions. J. Phys. Soc. Jpn. 13(11), 1281–1287 (1958). doi:10.1143/JPSJ.13.1281

    Article  Google Scholar 

  7. Chynoweth, A.G., Feldmann, W.L., Logan, R.A.: Excess tunnel current in silicon Esaki junctions. Phys. Rev. 121(3), 684–694 (1961). doi:10.1103/PhysRev.121.684

    Article  Google Scholar 

  8. Yang, T.K., Kim, S.B.: Quantitative analysis of initial short-term aging behavior and its implication for the efficiency droop in blue light-emitting diodes. IEEE Trans. Electron Devices 59(10), 2656–2661 (2012). doi:10.1109/TED.2012.2209181

    Article  MathSciNet  Google Scholar 

  9. Bochkareva, N.I., Zhirnov, E.A., Efremov, A.A., Rebane, Y.T., Gorbunov, R.I., Shreter, Y.G.: Tunnel-recombination currents and electroluminescence efficiency in InGaN/GaN LEDs. Semiconductors 39(5), 627–632 (2005). doi:10.1134/1.1923571

    Article  Google Scholar 

  10. Averkiev, N.S., Chernyakov, A.E., Levinshtein, M.E., Petrov, P.V., Yakimov, E.B., Shmidt, N.M., Shabunina, E.I.: Two channels of non-radiative recombination in InGaN/GaN LEDs. Physica B 404, 4896–4898 (2009). doi:10.1016/j.physb.2009.08.252

    Article  Google Scholar 

  11. Lee, K.B., Parbrook, P.J., Wang, T., Ba, J., Ranalli, F., Airey, R.J., Hill, G.: The origin of the high ideality factor in AlGaN-based quantum well ultraviolet light emitting diodes. Phys. Status Solidi B 247(7), 1761–1763 (2010). doi:10.1002/pssb.200983617

    Article  Google Scholar 

  12. Liu, L., Yang, J., Teng, D., Qi, S., Wang, G.: An explanation for invalidity of working currents’ derating on improving light-emitting diode devices’ reliability. J. Appl. Phys. 114(2), 023102 (2013). doi:10.1063/1.4813092

    Article  Google Scholar 

  13. Kang, B., Kim, S.B.: Temperature dependence of the component currents and internal quantum efficiency in blue light-emitting diodes. IEEE Trans. Electron Devices 60(3), 1060–1067 (2013). doi:10.1109/TED.2013.2242470

    Article  MathSciNet  Google Scholar 

  14. Meyaard, D.S., Cho, J., Schubert, E.F., Han, S.H., Kim, M.H., Sone, C.: Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes. Appl. Phys. Lett. 103(12), 121103 (2013). doi:10.1063/1.4821538

    Article  Google Scholar 

  15. Cao, X.A., Stokes, E.B., Sandvik, P.M., LeBoeuf, S.F., Kretchmer, J., Walker, D.: Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett. 23(9), 535–537 (2002). doi:10.1109/LED.2002.802601

    Article  Google Scholar 

  16. Cao, X.A., Teetsov, J.M., D’Evelyn, M.P., Merfeld, D.W., Yan, C.H.: Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates. Appl. Phys. Lett. 85(1), 7–9 (2004). doi:10.1063/1.1767280

    Article  Google Scholar 

  17. Casey Jr, H.C., Muth, J., Krishnankutty, S., Zavada, J.M.: Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue lightemitting diodes. Appl. Phys. Lett. 68(20), 2867–2869 (1996). doi:10.1063/1.116351

    Article  Google Scholar 

  18. Perlin, P., Osinski, M., Eliseev, P.G., Smagley, V.A., Mu, J., Banas, M., Sartori, P.: Low-temperature study of current and electroluminescence in InGaN/AlGaN/GaN double-heterostructure blue light-emitting diodes. Appl. Phys. Lett. 69(12), 1680 (1996). doi:10.1063/1.117026

    Article  Google Scholar 

  19. Reynolds, C.L., Patel, A.: Tunneling entity in different injection regimes of InGaN light emitting diodes. J. Appl. Phys. 103(8), 086102 (2008). doi:10.1063/1.2906326

    Article  Google Scholar 

  20. Nana, R., Gnanachchelvi, P., Awaah, M.A., Gowda, M.H., Kamto, A.M., Wang, Y., Park, M., Das, K.: Effect of deep-level states on current-voltage characteristics and electroluminescence of blue and UV light-emitting diodes. Phys. Status Solidi A 207(6), 1489–1496 (2010). doi:10.1002/pssa.200925596

    Article  Google Scholar 

  21. Yan, D., Lu, H., Chen, D., Zhang, R., Zheng, Y.: Forward tunneling current in GaN-based blue light-emitting diodes. Appl. Phys. Lett. 96(8), 083504 (2010). doi:10.1063/1.3327332

    Article  Google Scholar 

  22. Kim, J., Tak, Y., Kim, J., Chae, S., Kim, J.K., Park, Y.: Analysis of forward tunneling current in InGaN/GaN multiple quantum well light-emitting diodes grown on Si (111) substrate. J. Appl. Phys. 114(1), 013101 (2013). doi:10.1063/1.4812231

    Article  Google Scholar 

  23. Hirsch, L., Barrière, A.S.: Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy. J. Appl. Phys. 94(8), 5014 (2003). doi:10.1063/1.1605252

    Article  Google Scholar 

  24. Shifren, L., Ferry, D.K.: Particle Monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285(3–4), 217–221 (2001). doi:10.1016/S0375-9601(01)00344-9

    Article  MATH  Google Scholar 

  25. Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G., O’Hara, F.G.: A new recombination model describing heavy-doping effects and low-temperature behaviour. In: 1989 IEEE international electron devices meeting (IEDM ’89), pp. 307–310. Washington (1989). doi:10.1109/IEDM.1989.74285

  26. Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2), 331–338 (1992). doi:10.1109/16.121690

  27. Roulston, D.J., Arora, N.D., Chamberlain, S.G.: Modeling and measurements of minority-carrier lifetime versus doping in diffused layers on \(n^{+}\)-\(p\) silicon diodes. IEEE Trans. Electron Devices 29(2), 284–291 (1982). doi:10.1109/T-ED.1982.20697

    Article  Google Scholar 

  28. Vincent, G., Chantre, A., Bois, D.: Electric field effect on the thermal emission of traps in semiconductor junctions. J. Appl. Phys. 50(8), 5484–5487 (1972). doi:10.1063/1.326601

    Article  Google Scholar 

  29. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)

    Book  Google Scholar 

  30. Sakowski, K., Marcinkowski, L., Krukowski, S., Grzanka, S., Litwin-Staszewska, E.: Simulation of trap-assisted tunneling effect on characteristics of gallium nitride diodes. J. Appl. Phys. 111(12), 123115 (2012). doi:10.1063/1.4730772

  31. Auf der Maur, M., Galler, B., Pietzonka, I., Strassburg, M., Lugauer, H., Di Carlo, A.: Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 105(13), 133504 (2014). doi:10.1063/1.4896970

    Article  Google Scholar 

  32. Schenk, A.: A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon. Solid-State Electron. 35(11), 1585–1596 (1992). doi:10.1016/0038-1101(92)90184-E

    Article  Google Scholar 

  33. Huang, K., Rhys, A.: Theory of light absorption and non-radiative transitions in f-centres. Proc. R. Soc. Lond. A 204(1078), 406–423 (1950). doi:10.1098/rspa.1950.0184

    Article  MATH  Google Scholar 

  34. Palma, A., Godoy, A., Jiménez-Tejada, J.A., Carceller, J.E., López-Villanueva, J.A.: Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structures. Phys. Rev. B 56(15), 9565–9574 (1997). doi:10.1103/PhysRevB.56.9565

    Article  Google Scholar 

  35. Makram-Ebeid, S., Lannoo, M.: Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor. Phys. Rev. B 25(10), 6406–6424 (1982). doi:10.1103/PhysRevB.25.6406

    Article  Google Scholar 

  36. Synopsys Inc, Mountain View, CA: Sentaurus Device User Guide. Version J-2014.09 (2014)

  37. Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023 (1974). doi:10.1063/1.1663719

    Article  Google Scholar 

  38. Pons, D., Makram-Ebeid, S.: Phonon assisted tunnel emission of electrons from deep levels in GaAs. J. Physique 40(12), 1161–1172 (1979). doi:10.1051/jphys:0197900400120116100

    Article  Google Scholar 

  39. Kohn, W.: Shallow impurity states in silicon and germanium. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics. Advances in Research and Applications, pp. 257–320. Academic Press, New York (1957). doi:10.1016/S0081-1947(08)60104-6

    Google Scholar 

  40. Kane, E.O.: Energy band structure in p-type germanium and silicon. J. Phys. Chem. Solids 1(1–2), 82–99 (1956). doi:10.1016/0022-3697(56)90014-2

    Article  Google Scholar 

  41. Chaves, C.M., Majlis, N., Cardona, M.: Electronic energy bands in GaAs for imaginary crystal momentum. Solid State Commun. 4(12), 631–633 (1966). doi:10.1016/0038-1098(66)90059-7

    Article  Google Scholar 

  42. Jiménez-Molinos, F., Gámiz, F., Palma, A., Cartujo, P., López-Villanueva, J.A.: Direct and trap-assisted elastic tunneling through ultrathin gate oxides. J. Appl. Phys. 91(8), 5116–5124 (2002). doi:10.1063/1.1461062

    Article  Google Scholar 

  43. Zheng, J.H., Tan, H.S., Ng, S.C.: Theory of non-radiative capture of carriers by multiphonon processes for deep centres in semiconductors. J. Phys. Condens. Matter 6, 1695–1706 (1994). doi:10.1088/0953-8984/6/9/012

    Article  Google Scholar 

  44. Ridley, B.K.: Quantum Processes in Semiconductors, 4th edn. Clarendon Press, Oxford (1999)

    Google Scholar 

  45. Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94(6), 3675–3696 (2003). doi:10.1063/1.1600519

  46. Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., Zubrilov, A.: Gallium nitride (GaN). In: Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S. (eds.) Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, pp. 1–30. Wiley, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mandurrino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandurrino, M., Goano, M., Vallone, M. et al. Semiclassical simulation of trap-assisted tunneling in GaN-based light-emitting diodes. J Comput Electron 14, 444–455 (2015). https://doi.org/10.1007/s10825-015-0675-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0675-3

Keywords

Navigation