Skip to main content
Log in

Improving WO3/SnO2 photoanode stability by inhibiting hydroxyl radicals with cobalt ions in strong acid

通过钴离子抑制羟基自由基提高WO3/SnO2光阳极在 强酸中的稳定性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting in acid is promising, but its development has been hindered by the lack of stable photoanodes and effective nonprecious cocatalysts. WO3 is one of the few acid-stable semiconductors, but its fast performance decay under illumination remains elusive and unsolved. Herein, we present that the fast photo-current decreases of both WO3 and WO3/SnO2 photoanodes were caused by the hydroxyl radicals (OH}·) generated at the electrode/electrolyte interfaces, and we solved this issue by introducing cobalt (Co2+) ions into the electrolyte at pH 0.3, allowing for the efficient oxidation of H2O to O2 rather than to detrimental OH· radicals, with the Faradaic efficiency toward oxygen evolution increasing from 40% to 95% and the photocurrent density increasing from 0.6 to 0.8 mA cm−2 and being stable for 25 h at 1.2 V (reversible hydrogen electrode). Importantly, the scavenging of OH· radicals by vitamin C demonstrated the same photocurrent stability as the introduction of Co2+ ions, further implying the crucial inhibiting role of Co2+ ions. In-situ ultraviolet-visible and Raman spectroscopy indicated the trapping of surface holes by the oxidation of Co2+ to Co3+, and electron paramagnetic resonance revealed the role of Co2+ ions in the inhibition of OH· radicals. This study provides an ideal model for combining a homogeneous redox-active Co2+/Co3+ couple with a photoanode for water oxidation in strong acid.

摘要

酸性环境中光电化学水分解具有广阔的应用前景, 但由于缺乏 稳定的光阳极以及有效的非贵金属助催化剂, 其发展受到了极大的阻 碍. WO3是能够在酸性环境下稳定的半导体之一, 但其在光照下的快速 性能衰减仍然是一个悬而未决的问题. 本研究提出WO3和WO3/SnO2光 阳极光电流的快速下降是因为电极/电解质界面上产生的羟基自由基 (OH·)导致的. 我们发现在pH为0.3的电解质中引入钴(Co2+)离子可以有 效解决这个问题. Co2+的存在可以促进H2O高效氧化为O2, 而不是产生 不利的OH·自由基. 最终在Co2+存在条件下, 可以将光电分解水的法拉 第效率从40%提高到95%, 将光电流密度从0.6提高到0.8 mA cm−2, 并在 1.2 V (可逆氢电极)下稳定25 h. 重要的是, 在利用维生素C淬灭OH·自 由基以后, 其光电流稳定性表现出与引入Co2+离子时一致, 进一步表明 Co2+离子对于OH·的关键抑制作用. 此外, 原位紫外-可见光谱和拉曼光 谱表明Co2+会捕获表面空穴并被氧化为Co3+. 电子顺磁共振也进一步 揭示了Co2+离子对OH·自由基的抑制作用. 本研究为均相的Co2+/Co3+ 氧化还原物种与光阳极结合用于强酸中的水氧化提供了参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Chen H, Gao G, et al. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy, 2016, 24: 94–102

    Article  CAS  Google Scholar 

  2. Huang J, Ding Y, Luo X, et al. Solvation effect promoted formation of p-n junction between WO3 and FeOOH: A high performance photoanode for water oxidation. J Catal, 2016, 333: 200–206

    Article  CAS  Google Scholar 

  3. Huang J, Zhang Y, Ding Y. Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation. ACS Catal, 2017, 7: 1841–1845

    Article  CAS  Google Scholar 

  4. Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev, 2014, 43: 7520–7535

    Article  CAS  Google Scholar 

  5. Spurgeon JM, Velazquez JM, McDowell MT. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Phys Chem Chem Phys, 2014, 16: 3623–3631

    Article  CAS  Google Scholar 

  6. Wang G, Ling Y, Wang H, et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci, 2012, 5: 6180–6187

    Article  CAS  Google Scholar 

  7. Wang G, Ling Y, Li Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 2012, 4: 6682–6691

    Article  CAS  Google Scholar 

  8. Solarska R, Jurczakowski R, Augustynski J. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Nanoscale, 2012, 4: 1553–1556

    Article  CAS  Google Scholar 

  9. Mi Q, Zhanaidarova A, Brunschwig BS, et al. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ Sci, 2012, 5: 5694–5700

    Article  CAS  Google Scholar 

  10. Huang J, Yue P, Wang L, et al. A review on tungsten-trioxide-based photoanodes for water oxidation. Chin J Catal, 2019, 40: 1408–1420

    Article  CAS  Google Scholar 

  11. Zheng G, Wang J, Liu H, et al. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale, 2019, 11: 18968–18994

    Article  CAS  Google Scholar 

  12. Markhabayeva AA, Moniruddin M, Dupre R, et al. Designing of WO3@Co3O4 heterostructures to enhance photoelectrochemical performances. J Phys Chem A, 2020, 124: 486–491

    Article  CAS  Google Scholar 

  13. Kwong WL, Lee CC, Messinger J. Transparent nanoparticulate FeOOH improves the performance of a WO3 photoanode in a tandem watersplitting device. J Phys Chem C, 2016, 120: 10941–10950

    Article  CAS  Google Scholar 

  14. Gerken JB, McAlpin JG, Chen JYC, et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. J Am Chem Soc, 2011, 133: 14431–14442

    Article  CAS  Google Scholar 

  15. Bloor LG, Molina PI, Symes MD, et al. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc, 2014, 136: 3304–3311

    Article  CAS  Google Scholar 

  16. Liu Y, Si B, Zhao C, et al. Degradation of emerging contaminants by Co (III) ions in situ generated on anode surface in aqueous solution. Chemosphere, 2019, 221: 543–553

    Article  CAS  Google Scholar 

  17. Jeon TH, Monllor-Satoca D, Moon GH, et al. Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nat Commun, 2020, 11: 967–975

    Article  CAS  Google Scholar 

  18. Sequeira CAC, Santos DMF, Brito PSD. Mediated and non-mediated electrochemical oxidation of isopropanol. Appl Surf Sci, 2006, 252: 6093–6096

    Article  CAS  Google Scholar 

  19. Jeon TH, Han S, Kim B, et al. High-valent iron redox-mediated photoelectrochemical water oxidation. ACS Energy Lett, 2022, 7: 59–66

    Article  CAS  Google Scholar 

  20. Wu Q, Bu Q, Li S, et al. Enhanced interface charge transfer via n-n WO3/Ti-Fe2O3 heterojunction formation for water splitting. J Alloys Compd, 2019, 803: 1105–1111

    Article  CAS  Google Scholar 

  21. Yang Y, Zhan F, Li H, et al. In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid. J Solid State Electrochem, 2017, 21: 2231–2240

    Article  CAS  Google Scholar 

  22. Zhan F, Liu W, Li W, et al. Efficient solar water oxidation by WO3 plate arrays film decorated with CoOx electrocatalyst. Int J Hydrogen Energy, 2016, 41: 11925–11932

    Article  CAS  Google Scholar 

  23. Mehmood F, Iqbal J, Jan T, et al. Structural, Raman and photo-luminescence properties of Fe doped WO3 nanoplates with anti cancer and visible light driven photocatalytic activities. J Alloys Compd, 2017, 728: 1329–1337

    Article  CAS  Google Scholar 

  24. Song H, Li Y, Lou Z, et al. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B-Environ, 2015, 166–167: 112–120

    Article  Google Scholar 

  25. Kalanur SS. Structural, optical, band edge and enhanced photoelectrochemical water splitting properties of tin-doped WO3. Catalysts, 2019, 9: 456–468

    Article  CAS  Google Scholar 

  26. Kriti, Kaur P, Kaur S, et al. Optical excitations and ferromagnetic ordering in Sm doped WO3 at dilute concentrations. Mater Today Commun, 2021, 26: 101721–101731

    Article  CAS  Google Scholar 

  27. Shen JY, Wang MD, Wang YF, et al. Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor. Sens Actuat B-Chem, 2018, 256: 27–37

    Article  CAS  Google Scholar 

  28. Janáky C, Rajeshwar K, de Tacconi NR, et al. Tungsten-based oxide semiconductors for solar hydrogen generation. Catal Today, 2013, 199: 53–64

    Article  Google Scholar 

  29. Knöppel J, Kormányos A, Mayerhöfer B, et al. Photocorrosion of WO3 photoanodes in different electrolytes. ACS Phys Chem Au, 2021, 1: 613

    Article  Google Scholar 

  30. Kalanur SS, Duy LT, Seo H. Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes. Top Catal, 2018, 61: 10431076

    Article  Google Scholar 

  31. Sun J, Sun L, Yang X, et al. Photoanode of coupling semiconductor heterojunction and catalyst for solar pec water splitting. Electrochim Acta, 2020, 331: 135282–135291

    Article  CAS  Google Scholar 

  32. Dotan H, Sivula K, Grätzel M, et al. Probing the photoelectrochemical properties of hematite (a-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci, 2011, 4: 958–964

    Article  CAS  Google Scholar 

  33. Chen Y, Wang L, Gao R, et al. Polarization-enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical water splitting. Appl Catal B-Environ, 2019, 259: 118079118087

    Article  Google Scholar 

  34. Wang X, Liow C, Bisht A, et al. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv Mater, 2015, 27: 2207–2214

    Article  CAS  Google Scholar 

  35. Bai S, Chu H, Xiang X, et al. Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting. Chem Eng J, 2018, 350: 148–156

    Article  CAS  Google Scholar 

  36. Seabold JA, Choi KS. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater, 2011, 23: 1105–1112

    Article  CAS  Google Scholar 

  37. Yang M, He H, Du J, et al. Insight into the kinetic influence of oxygen vacancies on the WO3 photoanodes for solar water oxidation. J Phys Chem Lett, 2019, 10: 6159–6165

    Article  CAS  Google Scholar 

  38. Escalona-Durán F, Muñoz-Morales M, Souza FL, et al. Promoting the formation of Co(III) electrocatalyst with diamond anodes. J Electroanal Chem, 2021, 882: 115007

    Article  Google Scholar 

  39. Herlina H, Derlini D, Muhammad R. Co(III) as mediator in phenol destruction using electrochemical oxidation. In: Proceedings of the 14th International Symposium on Therapeutic Ultrasound. Las Vegas, Nevada: 2017, 1823, 020036–020044

  40. Lee S, Moysiadou A, Chu YC, et al. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides. Energy Environ Sci, 2022, 15: 206–214

    Article  CAS  Google Scholar 

  41. Zhang X, Chandra D, Kajita M, et al. Facile and simple fabrication ofan efficient nanoporous WO3 photoanode for visible-light-driven water splitting. Int J Hydrogen Energy, 2014, 39: 20736–20743

    Article  CAS  Google Scholar 

  42. Zhang Q, Wang L, Chen B, et al. Understanding and modeling the formation and transformation of hydrogen peroxide in water irradiated by 254 nm ultraviolet (UV) and 185 nm vacuum UV (VUV): Effects of pH and oxygen. Chemosphere, 2020, 244: 125483

    Article  CAS  Google Scholar 

  43. Tan S, Feng H, Ji Y, et al. Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1 × 1 surface. J Am Chem Soc, 2012, 134: 9978–9985

    Article  CAS  Google Scholar 

  44. Du J, Wang C, Zhao Z, et al. Role of oxygen and superoxide radicals in promoting H2O2 production during VUV/UV radiation of water. Chem Eng Sci, 2021, 241: 116683–116691

    Article  CAS  Google Scholar 

  45. Chen T, Ding Q, Wang X, et al. Mechanistic studies on photocatalytic overall water splitting over Ga2O3-based photocatalysts by operando MS-FTIR spectroscopy. J Phys Chem Lett, 2021, 12: 6029–6033

    Article  CAS  Google Scholar 

  46. Cui G, Wang W, Ma M, et al. IR-driven photocatalytic water splitting with WO2-NaxWO3 hybrid conductor material. Nano Lett, 2015, 15: 7199–7203

    Article  CAS  Google Scholar 

  47. Nakabayashi Y, Nosaka Y. OH radical formation at distinct faces of rutile TiO2 crystal in the procedure of photoelectrochemical water oxidation. J Phys Chem C, 2013, 117: 23832–23839

    Article  CAS  Google Scholar 

  48. Luo L, Wang Z, Xiang X, et al. Selective activation of benzyl alcohol coupled with photoelectrochemical water oxidation via a radical relay strategy. ACS Catal, 2020, 10: 4906–4913

    Article  CAS  Google Scholar 

  49. Liu Y, Wang M, Zhang B, et al. Mediating the oxidizing capability of surface-bound hydroxyl radicals produced by photoelectrochemical water oxidation to convert glycerol into dihydroxyacetone. ACS Catal, 2022, 12: 6946–6957

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22072013).

Author information

Authors and Affiliations

Authors

Contributions

Cui C conceived this study and led the project. Shi X conducted the experiment and analyzed the data; Wu Q performed the EPR measurement and optimized the graphs; Cui C and Shi X wrote the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Chunhua Cui  (崔春华).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Xiaobing Shi received his master’s degree from the School of Chemistry and Chemical Engineering, Guangxi University in 2019. He is now a PhD candidate under the supervision of Prof. Chunhua Cui at the University of Electronic Science and Technology of China. His research focuses on the synthesis and in-situ spectrum of semiconductor for photoelectrocatalytic water splitting.

Chunhua Cui is currently a professor at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China. He received his PhD degree from the University of Science and Technology of China in 2011. He joined the University of Electronic Science and Technology of China in 2017. His research interest includes synthetic chemistry, electrocatalytic conversion of small molecules, and in-situ electrochemical spectroscopy.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wu, Q. & Cui, C. Improving WO3/SnO2 photoanode stability by inhibiting hydroxyl radicals with cobalt ions in strong acid. Sci. China Mater. 66, 614–622 (2023). https://doi.org/10.1007/s40843-022-2188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2188-5

Keywords

Navigation