Skip to main content
Log in

In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report exploiting effective Sn incorporation to enhance the photoelectrochemical activity of WO3 plate films, applied as photoanodes for photoelectrocatalytic (PEC) CO2 reduction into formic acid (HCOOH). The in situ Sn-doped WO3 films were prepared on a fluorine-doped tin oxide (FTO) substrates by a hydrothermal method with adding Na2SnO3 as the Sn precursor. Sn dopants were confirmed with an X-ray photoelectron spectroscopy (XPS), which enlarged the growth density and crystallinity of WO3 plate films. Comparing the PEC properties, Sn-doped WO3 anode exhibits a photocurrent density of 1.11 mA/cm2 at 1.2 V vs. Ag/AgCl, which is approximately 1.4 times higher than that of the undoped films. The highest IPCE value increased from 28.3% to 45.1% after Sn doping, which is approximately 1.6 times higher than that of the undoped ones. After 3 h for PEC reduction of CO2, the maximum formic acid yield of Sn-doped WO3 film is 485 nmol/cm2, while that of undoped WO3 film is 206 nmol/cm2. Based on the electrochemical and photoelectrochemical analysis, the enhanced PEC performance in Sn-doped WO3 films owes to its improved carriers density, electrical conductivity, and electrons lifetime. This is the first report to investigate the effect of Sn doping on the photoelectrochemical properties of WO3 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584):68–71

    Article  CAS  Google Scholar 

  2. Guo S, Zhao S, Gao J, Zhu C, Wu X, Fu Y, Huang H, Liu Y, Kang Z (2016) Cu-CDots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate. Nano. doi:10.1039/C6NR08104E

    Google Scholar 

  3. Sato S, Arai T, Morikawa T (2015) Toward solar-driven photocatalytic CO2 reduction using water as an electron donor. Inorg Chem 54(11):5105–5113

    Article  CAS  Google Scholar 

  4. Hisatomi T, Domen K (2016) Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. doi:10.1039/C6FD00221H

    Google Scholar 

  5. Magesh G, Kim ES, Kang HJ, Banu M, Kim JY, Kim JH, Lee JS (2014) A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials. J Mater Chem A 2(7):2044–2050

    Article  CAS  Google Scholar 

  6. Kim JH, Magesh G, Kang HJ, Banu M, Kim JH, Lee J, Lee JS (2015) Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy 15:153–163

    Article  CAS  Google Scholar 

  7. Cheng J, Zhang M, Liu J, Zhou J, Cen K (2015) A Cu foam cathode used as a Pt–RGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode. J Mater Chem A 3(24):12947–12957

    Article  CAS  Google Scholar 

  8. Zhou X, Liu R, Sun K, Chen Y, Verlage E, Francis SA, Lewis NS, Xiang C (2016) Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Letters 1(4):764–770

    Article  CAS  Google Scholar 

  9. Yang Y, Xie R, Li H, Liu C, Liu W, Zhan F (2016) Photoelectrocatalytic reduction of CO2 into formic acid using WO3–x/TiO2 film as novel photoanode. T Nonferr Metal Soc 26(9):2390–2396

    Article  CAS  Google Scholar 

  10. Yagi M, Maruyama S, Sone K, Nagai K, Norimatsu T (2008) Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film. J Solid State Chem 181(1):175–182

    Article  CAS  Google Scholar 

  11. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide-properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196

    Article  CAS  Google Scholar 

  12. Zheng H, Tachibana Y, Kalantar-Zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26(24):19148–19152

    Article  CAS  Google Scholar 

  13. Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS (2016) Two dimensional and layered transition metal oxides. Applied Materials Today 5:73–89

    Article  Google Scholar 

  14. Jiao Z, Wang J, Ke L, Sun XW, Demir HV (2011) Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. ACS Appl Mater Interf 3(2):229–236

    Article  CAS  Google Scholar 

  15. Amano F, Li D, Ohtani B (2010) Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure. Chem Commun 46(16):2769–2771

    Article  CAS  Google Scholar 

  16. Sieb NR, Wu N-c, Majidi E, Kukreja R, Branda NR, Gates BD (2009) Hollow metal nanorods with tunable dimensions, porosity, and photonic properties. ACS Nano 3(6):1365–1372

    Article  CAS  Google Scholar 

  17. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12(3):1690–1696

    Article  CAS  Google Scholar 

  18. Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J (2012) WO3–x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24(7):938–944

    Article  CAS  Google Scholar 

  19. Ng CY, Razak KA, Lockman Z (2014) WO3 nanorods prepared by low-temperature seeded growth hydrothermal reaction. J Alloy Compd 588:585–591

    Article  CAS  Google Scholar 

  20. Yong S-M, Nikolay T, Ahn BT, Kim DK (2013) One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells. J Alloy Compd 547:113–117

    Article  CAS  Google Scholar 

  21. Zhan F, Li J, Li W, Liu Y, Xie R, Yang Y, Li Y, Chen Q (2015) In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. Int J Hydrogen Energ 40(20):6512–6520

    Article  CAS  Google Scholar 

  22. Zhan F, Xie R, Li W, Li J, Yang Y, Li Y, Chen Q (2015) In situ synthesis of g-C3N4/WO3 heterojunction plates array films with enhanced photoelectrochemical performance. RSC Adv 5(85):69753–69760

    Article  CAS  Google Scholar 

  23. Zhan F, Yang YH, Li W, Liu W, Li Y, Chen Q (2016) Preparation of DyVO4/WO3 heterojunction plates array films with enhanced photoelectrochemical activity. RSC Adv 6:10393–10400

    Article  CAS  Google Scholar 

  24. Zhan F, Li J, Li W, Yang Y, Liu W, Li Y (2016) In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties. J Power Sources 325:591–597

    Article  CAS  Google Scholar 

  25. Alves SA, Soares LL, Goulart LA, Mascaro LH (2016) Solvent effects on the photoelectrochemical properties of WO3 and its application as dopamine sensor. J Solid State Electr 20(9):2461–2470

    Article  CAS  Google Scholar 

  26. Tubtimtae A, Cheng K-Y, Lee M-W (2014) Ag2S quantum dot-sensitized WO3 photoelectrodes for solar cells. J Solid State Electr 18(6):1627–1633

    Article  CAS  Google Scholar 

  27. Zhuiykov S, Kats E, Carey B, Balendhran S (2014) Proton intercalated two-dimensional WO3 nano-flakes with enhanced charge-carrier mobility at room temperature. Nano 6(24):15029–15036

    CAS  Google Scholar 

  28. Li W, Zhan F, Li J, Liu C, Yang Y, Li Y, Chen Q (2015) Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes. Electrochim Acta 160:57–63

    Article  CAS  Google Scholar 

  29. Kumar RD, Karuppuchamy S (2016) Microwave mediated synthesis of nanostructured Co-WO3 and CoWO4 for supercapacitor applications. J Alloy Compd 674:384–391

    Article  Google Scholar 

  30. Kumar RD, Andou Y, Karuppuchamy S (2016) Synthesis and characterization of nanostructured Ni-WO3 and NiWO4 for supercapacitor applications. J Alloy Compd 654:349–356

    Article  CAS  Google Scholar 

  31. Miseki Y, Kusama H, Sugihara H, Sayama K (2010) Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light. J Phys Chem Lett 1(8):1196–1200

    Article  CAS  Google Scholar 

  32. Upadhyay SB, Mishra RK, Sahay PP (2014) Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sensors Actuators B Chem 193:19–27

    Article  CAS  Google Scholar 

  33. Liew SL, Subramanian GS, Seng Chua C, Luo H-K (2016) Studies into the Yb-doping effects on photoelectrochemical properties of WO3 photocatalysts. RSC Adv 6(23):19452–19458

    Article  CAS  Google Scholar 

  34. Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132(21):7436–7444

    Article  CAS  Google Scholar 

  35. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11(5):2119–2125

    Article  CAS  Google Scholar 

  36. Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH (2014) Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Interf 6(8):5852–5859

    Article  Google Scholar 

  37. Cai L, Cho IS, Logar M, Mehta A, He J, Lee CH, Rao PM, Feng Y, Wilcox J, Prinz FB (2014) Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Phys Chem Chem Phys 16(24):12299–12306

    Article  CAS  Google Scholar 

  38. Yang J, Li WZ, Li J, Sun DB, Chen QY (2012) Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J Mater Chem 22(34):17744–17752

    Article  CAS  Google Scholar 

  39. Riad A, Mahmoud S, Ibrahim A (2001) Structural and DC electrical investigations of ZnO thin films prepared by spray pyrolysis technique. Phys B Condens Matter 296(4):319–325

    Article  CAS  Google Scholar 

  40. Keskenler EF, Turgut G, Aydın S, Doğan S (2013) W doped SnO2 growth via sol-gel routes and characterization: nanocubes. Optik-International Journal for Light and Electron Optics 124(21):4827–4831

    Article  CAS  Google Scholar 

  41. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329

    Article  CAS  Google Scholar 

  42. Roy A, Arbuj S, Waghadkar Y, Shinde M, Umarji G, Rane S, Patil K, Gosavi S, Chauhan R (2016) Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity. J Solid State Electrochem. doi:10.1007/s10008-016-3328-y

    Google Scholar 

  43. Yang Y, Xie R, Liu Y, Li J, Li W (2015) Effect of surface passivation on photoelectrochemical water splitting performance of WO3 vertical plate-like films. Catalysts 5(4):2024–2038

    Article  CAS  Google Scholar 

  44. Han S, Li J, Chen X, Huang Y, Liu C, Yang Y, Li W (2012) Enhancing photoelectrochemical activity of nanocrystalline WO3 electrodes by surface tuning with Fe(III). Int J Hydrogen Energ 37(22):16810–16816

    Article  CAS  Google Scholar 

  45. Wang L, Lee CY, Mazare A, Lee K, Müller J, Spiecker E, Schmuki P (2014) Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing. Chemistry–a European journal 20(1):77–82

    Article  Google Scholar 

  46. Xi L, Chiam SY, Mak WF, Tran PD, Barber J, Loo SCJ, Wong LH (2013) A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem Sci 4(1):164–169

    Article  CAS  Google Scholar 

  47. Subrahmanyam A, Karuppasamy A (2007) Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol Energ Mat Sol C 91(4):266–274

    Article  CAS  Google Scholar 

  48. Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123(43):10639–10649

    Article  CAS  Google Scholar 

  49. Li WZ, Li J, Wang X, Ma J, Chen QY (2010) Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method. Int J Hydrogen Energ 35(24):13137–13145

    Article  CAS  Google Scholar 

  50. Li WZ, Li J, Wang X, Ma J, Chen QY (2010) Effect of citric acid on photoelectrochemical properties of tungsten trioxide films prepared by the polymeric precursor method. Appl Surf Sci 256(23):7077–7082

    Article  CAS  Google Scholar 

  51. Chahmat N, Souier T, Mokri A, Bououdina M, Aida MS, Ghers M (2014) Structure, microstructure and optical properties of Sn-doped ZnO thin films. J Alloy Compd 593:148–153

    Article  CAS  Google Scholar 

  52. Zhou W, Liu L, Yuan M, Song Q, Wu P (2012) Electronic and optical properties of W-doped SnO2 from first-principles calculations. Comput Mater Sci 54:109–114

    Article  CAS  Google Scholar 

  53. Regoutz A, Oropeza FE, Poll CG, Payne DJ, Palgrave RG, Panaccione G, Borgatti F, Agrestini S, Utsumi Y, Tsuei KD, Liao YF, Watson GW, Egdell RG (2016) Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy. Chem Phys Lett 647:59–63

    Article  CAS  Google Scholar 

  54. Hahn NT, Mullins CB (2010) Photoelectrochemical performance of nanostructured Ti-and Sn-doped α-Fe2O3 photoanodes. Chem Mater 22(23):6474–6482

    Article  CAS  Google Scholar 

  55. Wang G, Ling Y, Wheeler DA, George KE, Horsley K, Heske C, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive alpha-Fe2O3-based films for water oxidation. Nano Lett 11(8):3503–3509

    Article  CAS  Google Scholar 

  56. Sivakumar R, Raj AME, Subramanian B, Jayachandran M, Trivedi D, Sanjeeviraja C (2004) Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices. Mater Res Bull 39(10):1479–1489

    Article  CAS  Google Scholar 

  57. Su L, Zhang L, Fang J, Xu M, Lu Z (1999) Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films. Sol Energ Mat Sol C 58(2):133–140

    Article  CAS  Google Scholar 

  58. Zhang WD, Jiang LC, Ye JS (2009) Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes. J Phys Chem C 113(36):16247–16253

    Article  CAS  Google Scholar 

  59. Pilli SK, Deutsch TG, Furtak TE, Brown LD, Turner JA, Herring AM (2013) BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Phys Chem Chem Phys 15(9):3273–3278

    Article  CAS  Google Scholar 

  60. Zhou M, Bao J, Xu Y, Zhang J, Xie J, Guan M, Wang C, Wen L, Lei Y, Xie Y (2014) Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 8(7):7088–7098

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (21471054) and postgraduate research and innovation project of Hunan Province (CX2016B305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Yang.

Electronic supplementary material

Fig. S1

(DOCX 72 kb)

Fig. S2

(DOCX 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhan, F., Li, H. et al. In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid. J Solid State Electrochem 21, 2231–2240 (2017). https://doi.org/10.1007/s10008-017-3569-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3569-4

Keywords

Navigation