Skip to main content
Log in

Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation

用于高效C2醇氧化电催化的三金属钯-银-铜纳米片组装体

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The synthesis of two-dimensional (2D) alloyed efficient electrocatalysts with several active sites has attracted considerable attention in recent years. In this work, trimetallic palladium-silver-copper (PdAgCu) nanosheet assemblies (NSAs) are synthesized in the presence of cetyltrimethylammonium bromide and molybdenum hexacarbonyl as the structure-directing agents. The morphologies and structures of the trimetallic PdAgCu NSAs are identified by high-angle annular dark-field scanning transmission electron microscopy, transmission electron microscopy, and X-ray diffraction. The trimetallic Pd6Ag3Cu2 NSA has high electrocatalytic performance with outstanding long-term stabilities for ethylene glycol oxidation reaction (EGOR = 5696 mA mgPd−1) and ethanol oxidation reaction (EOR = 4374 mA mgPd−1). The enhanced electrocatalytic activities can be attributed to the synergistic effects, including strain, ligand, and bifunctional effects. Furthermore, the electrocatalytic mechanisms of the trimetallic electrocatalysts toward C2 alcohols are determined, and high concentrations of OH and C2 alcohols favor EGOR and EOR.

摘要

近年来, 具有丰富活性中心的二维合金高效电催化剂的合成引 起人们极大关注. 本工作以十六烷基三甲基溴化铵和六羰基钼为结构 导向剂合成出三金属钯-银-铜纳米片组装体. 用高角度环形暗场扫描 透射电子显微镜、透射电子显微镜和X射线衍射仪对三金属PdAgCu纳 米片组装体的形貌和结构进行了表征. 结果表明三金属Pd6Ag3Cu2纳米 片组装体电催化性能优异, 且对乙二醇氧化反应(5696 mA mgPd−1)和乙 醇氧化反应(4374 mA mgPd−1)具有良好的催化稳定性. 电催化活性的增 强可归因于应变效应、配体效应及双功能效应的协同作用. 本文系统 研究了三金属电催化剂对C2醇的电催化机理, 发现较高的羟基和C2醇 浓度有利于乙二醇氧化反应和乙醇氧化反应.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo M, Zhao Z, Zhang Y, et al. PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574: 81–85

    Article  CAS  Google Scholar 

  2. Li J, Yin HM, Li XB, et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat Energy, 2017, 2: 17111

    Article  CAS  Google Scholar 

  3. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355: 6321

    Article  Google Scholar 

  4. Yuan X, Zhang Y, Cao M, et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett, 2019, 19: 4752–4759

    Article  CAS  Google Scholar 

  5. Chen A, Ostrom C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem Rev, 2015, 115: 11999–12044

    Article  CAS  Google Scholar 

  6. Xu H, Shang H, Wang C, et al. Low-dimensional metallic nanomaterials for advanced electrocatalysis. Adv Funct Mater, 2020, 30: 2006317

    Article  CAS  Google Scholar 

  7. Gao F, Zhang Y, Ren F, et al. Universal surfactant-free strategy for selfstanding 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis. Adv Funct Mater, 2020, 30: 2000255

    Article  CAS  Google Scholar 

  8. Bao L, Zhu S, Chen Y, et al. Anionic defects engineering of Co3O4 catalyst for toluene oxidation. Fuel, 2022, 314: 122774

    Article  CAS  Google Scholar 

  9. Zheng BF, Ouyang T, Wang Z, et al. Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem Commun, 2018, 54: 9583–9586

    Article  CAS  Google Scholar 

  10. Gao F, Zhang Y, Song P, et al. Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation. J Mater Chem A, 2019, 7: 7891–7896

    Article  CAS  Google Scholar 

  11. Zhu X, Xu J, Luo Y, et al. MoNb12O33 as a new anode material for highcapacity, safe, rapid and durable Li+ storage: Structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A, 2019, 7: 6522–6532

    Article  CAS  Google Scholar 

  12. Wu T, Wang X, Emrehan Emre A, et al. Graphene-nickel nitride hybrids supporting palladium nanoparticles for enhanced ethanol electrooxidation. J Energy Chem, 2021, 55: 48–54

    Article  CAS  Google Scholar 

  13. Huang S, Ouyang T, Zheng BF, et al. Enhanced photoelectrocatalytic activities for CH3OH-to-HCHO conversion on Fe2O3/MoO3:Fe-O-Mo covalency dominates the intrinsic activity. Angew Chem Int Ed, 2021, 60: 9546–9552

    Article  CAS  Google Scholar 

  14. Wang AL, Xu H, Feng JX, et al. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J Am Chem Soc, 2013, 135: 10703–10709

    Article  CAS  Google Scholar 

  15. Zhang J, Ye J, Fan Q, et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J Am Chem Soc, 2018, 140: 11232–11240

    Article  CAS  Google Scholar 

  16. Fan X, Zerebecki S, Du R, et al. Promoting the electrocatalytic performance of noble metal aerogels by ligand-directed modulation. Angew Chem Int Ed, 2020, 59: 5706–5711

    Article  CAS  Google Scholar 

  17. Ding J, Liu Z, Liu X, et al. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew Chem Int Ed, 2020, 59: 5092–5101

    Article  CAS  Google Scholar 

  18. Wang W, Zhu YB, Wen Q, et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv Mater, 2019, 31: 1900528

    Article  Google Scholar 

  19. Gao Y, Wang J, Chai M, et al. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano, 2020, 14: 5686–5699

    Article  CAS  Google Scholar 

  20. Sun D, Wang Y, Livi KJT, et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano, 2019, 13: 10818–10825

    Article  CAS  Google Scholar 

  21. Evans EJ, Li H, Han S, et al. Oxidative cross-esterification and related pathways of Co-adsorbed oxygen and ethanol on Pd-Au. ACS Catal, 2019, 9: 4516–4525

    Article  CAS  Google Scholar 

  22. Yang M, Pang M, Chen J, et al. Surfactant-assisted synthesis of palladium nanosheets and nanochains for the electrooxidation of ethanol. ACS Appl Mater Interfaces, 2021, 13: 9830–9837

    Article  CAS  Google Scholar 

  23. Ma N, Wang S, Liu X, et al. PdPb bimetallic nanowires as electrocatalysts for enhanced ethanol electrooxidation. Sci China Mater, 2020, 63: 2040–2049

    Article  CAS  Google Scholar 

  24. Li K, Jiao T, Xing R, et al. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater, 2018, 61: 728–736

    Article  CAS  Google Scholar 

  25. Li M, Duanmu K, Wan C, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat Catal, 2019, 2: 495–503

    Article  CAS  Google Scholar 

  26. Qin Y, Zhang W, Wang F, et al. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C-C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed, 2022, 61

    Google Scholar 

  27. Cai J, Zeng Y, Guo Y. Copper@palladium-copper core-shell nanospheres as a highly effective electrocatalyst for ethanol electro-oxidation in alkaline media. J Power Sources, 2014, 270: 257–261

    Article  CAS  Google Scholar 

  28. Yao Y, Gu XK, He D, et al. Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction. J Am Chem Soc, 2019, 141: 19964–19968

    Article  CAS  Google Scholar 

  29. Li C, Yuan Q, Ni B, et al. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat Commun, 2018, 9: 3702

    Article  Google Scholar 

  30. Lv H, Sun L, Lopes A, et al. Insights into compositional and structural effects of bimetallic hollow mesoporous nanospheres toward ethanol oxidation electrocatalysis. J Phys Chem Lett, 2019, 10: 5490–5498

    Article  CAS  Google Scholar 

  31. Jin L, Xu H, Chen C, et al. Superior ethanol oxidation electrocatalysis enabled by ternary Pd-Rh-Te nanotubes. Inorg Chem, 2019, 58: 12377–12384

    Article  CAS  Google Scholar 

  32. Jiang M, Hu Y, Zhang W, et al. Regulating the alloying degree and electronic structure of Pt-Au nanoparticles for high-efficiency direct C2+ alcohol fuel cells. Chem Mater, 2021, 33: 3767–3778

    Article  CAS  Google Scholar 

  33. Zha M, Liu Z, Wang Q, et al. Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst. Chem Commun, 2021, 57: 199–202

    Article  CAS  Google Scholar 

  34. Fu Q, Li R, Zhu X, et al. Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A, 2019, 7: 19862–19871

    Article  CAS  Google Scholar 

  35. Yun Q, Lu Q, Li C, et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano, 2019, 13: 14329–14336

    Article  CAS  Google Scholar 

  36. Bu L, Tang C, Shao Q, et al. Three-dimensional Pd3Pb nanosheet assemblies: High-performance non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal, 2018, 8: 4569–4575

    Article  CAS  Google Scholar 

  37. Lao X, Yang M, Chen J, et al. The ethanol oxidation reaction on bimetallic PdxAg1-x nanosheets in alkaline media and their mechanism study. Electrochim Acta, 2021, 374: 137912

    Article  CAS  Google Scholar 

  38. Liu X, Wang K, Zhou L, et al. Shape-controlled synthesis of concave Pt and willow-like Pt nanocatalysts via electrodeposition with hydrogen adsorption/desorption and investigation of their electrocatalytic performances toward ethanol oxidation reaction. ACS Sustain Chem Eng, 2020, 8: 6449–6457

    Article  CAS  Google Scholar 

  39. Xing Y, Wang K, Li N, et al. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery. Matter, 2020, 2: 1494–1508

    Article  Google Scholar 

  40. Huang S, Zheng BF, Tang ZY, et al. CH3OH selective oxidation to HCHO on Z-scheme Fe2O3/g-C3N4 hybrid: The rate-determining step of C-H bond scission. Chem Eng J, 2021, 422: 130086

    Article  CAS  Google Scholar 

  41. Ouyang Y, Cao H, Wu H, et al. Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation. Appl Catal B-Environ, 2020, 265: 118606

    Article  CAS  Google Scholar 

  42. Wang Z, Huang L, Tian ZQ, et al. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. J Mater Chem A, 2019, 7: 18619–18625

    Article  CAS  Google Scholar 

  43. Xia Z, Guo S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev, 2019, 48: 3265–3278

    Article  CAS  Google Scholar 

  44. Sun J, Lao X, Yang M, et al. Alloyed palladium-lead nanosheet assemblies for electrocatalytic ethanol oxidation. Langmuir, 2021, 37: 14930–14940

    Article  CAS  Google Scholar 

  45. Cheng H, Yang N, Liu X, et al. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Natl Sci Rev, 2019, 6: 955–961

    Article  CAS  Google Scholar 

  46. Yang M, Lao X, Sun J, et al. Assembly of bimetallic PdAg nanosheets and their enhanced electrocatalytic activity toward ethanol oxidation. Langmuir, 2020, 36: 11094–11101

    Article  CAS  Google Scholar 

  47. Kim D, Lee YW, Lee SB, et al. Convex polyhedral Au@Pd core-shell nanocrystals with high-index facets. Angew Chem Int Ed, 2012, 51: 159–163

    Article  CAS  Google Scholar 

  48. Wang C, Chen DP, Sang X, et al. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano, 2016, 10: 6345–6353

    Article  CAS  Google Scholar 

  49. Zhu C, Shi Q, Fu S, et al. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater, 2016, 28: 8779–8783

    Article  CAS  Google Scholar 

  50. Lao X, Yang M, Sheng X, et al. Monodisperse PdBi nanoparticles with a face-centered cubic structure for highly efficient ethanol oxidation. ACS Appl Energy Mater, 2022, 5: 1282–1290

    Article  CAS  Google Scholar 

  51. Sun L, Lv H, Wang Y, et al. Unveiling synergistic effects of interstitial boron in palladium-based nanocatalysts for ethanol oxidation electrocatalysis. J Phys Chem Lett, 2020, 11: 6632–6639

    Article  CAS  Google Scholar 

  52. Wang X, Feng J, Bai Y, et al. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev, 2016, 116: 10983–11060

    Article  CAS  Google Scholar 

  53. Shi Q, Zhu C, Bi C, et al. Intermetallic Pd3Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. J Mater Chem A, 2017, 5: 23952–23959

    Article  CAS  Google Scholar 

  54. Kim I, Han OH, Chae SA, et al. Catalytic reactions in direct ethanol fuel cells. Angew Chem Int Ed, 2011, 50: 2270–2274

    Article  CAS  Google Scholar 

  55. Liang ZX, Zhao TS, Xu JB, et al. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta, 2009, 54: 2203–2208

    Article  CAS  Google Scholar 

  56. Cohen JL, Volpe DJ, Abruña HD. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys, 2007, 9: 49–77

    Article  CAS  Google Scholar 

  57. Wang L, Meng H, Shen PK, et al. In situ FTIR spectroelectrochemical study on the mechanism of ethylene glycol electrocatalytic oxidation at a Pd electrode. Phys Chem Chem Phys, 2011, 13: 2667–2673

    Article  CAS  Google Scholar 

  58. Jiang R, Tran DT, McClure JP, et al. A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal, 2014, 4: 2577–2586

    Article  CAS  Google Scholar 

  59. Du W, Mackenzie KE, Milano DF, et al. Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal, 2012, 2: 287–297

    Article  CAS  Google Scholar 

  60. Liu C, Chen Z, Rao D, et al. Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci China Mater, 2021, 64: 611–620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22172084 and 21773133) and the World-Class Discipline Program of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Contributions

Li Z, Lao X, and Guo P conceived and designed the electrocatalysts and experiments. Li Z, Lao X, and Yang L performed the experiments. Li Z, Lao X, Yang L, and Guo P contributed to the analysis of data and the drafting of the article. Lao X and Fu A contributed to the theoretical analysis. All authors discussed and commented on the article.

Corresponding author

Correspondence to Peizhi Guo  (郭培志).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Ze Li is a graduate student in Prof. Peizhi Guo’s group at the School of Materials Science and Engineering, Qingdao University. His current research interests focus on the synthesis and electrocatalytic properties of noble-metalbased nanomaterials.

Xianzhuo Lao is a graduate student in Prof. Peizhi Guo’s group at the School of Materials Science and Engineering, Qingdao University. His current research interests focus on the synthesis and electrocatalytic properties of noblemetal-based nanomaterials.

Peizhi Guo received his BSc degree from Liaocheng University (1998), MSc degree from Shandong University (2003), and PhD degree from the Institute of Chemistry, Chinese Academy of Sciences (2006). He joined Qingdao University as an associate professor in 2006 and became a full professor in 2013. His research interests focus on the design, synthesis, and self-assembly of nanoparticles for electrocatalysis and energy storage.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lao, X., Yang, L. et al. Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation. Sci. China Mater. 66, 150–159 (2023). https://doi.org/10.1007/s40843-022-2104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2104-4

Keywords

Navigation