Skip to main content
Log in

Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis, their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of metal precursors. Herein, we describe the successful synthesis of trimetallic PtRhNi alloy nanoassemblies (PtRhNi-ANAs) with tunable Pt/Rh ratios using a simple mixed cyanogel reduction method and provide a detailed characterization of their chemical composition, morphology, and structure. Additionally, the electrochemical properties of PtRhNi-ANAs are examined by cyclic voltammetry, revealing composition-dependent electrocatalytic activity in the ethanol oxidation reaction (EOR). Compared to a commercial Pt black electrocatalyst, optimized Pt3Rh1Ni2-ANAs display remarkably enhanced EOR electrocatalytic performance in alkaline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

    Article  Google Scholar 

  2. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  Google Scholar 

  3. Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450.

    Article  Google Scholar 

  4. Puthiyapura, V. K.; Brett, D. J. L.; Russell, A. E.; Lin, W.-F.; Hardacre, C. Biobutanol as fuel for direct alcohol fuel cells-investigation of Sn-modified Pt catalyst for butanol electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 12859–12870.

    Article  Google Scholar 

  5. Huang, M. H.; Wu, W. L.; Wu, C. X.; Guan, L. H. Pt2SnCu nanoalloy with surface enrichment of Pt defects and SnO2 for highly efficient electrooxidation of ethanol. J. Mater. Chem. A 2015, 3, 4777–4781.

    Article  Google Scholar 

  6. Gnanaprakasam, P.; Jeena, S. E.; Selvaraju, T. Hierarchical electroless Pt deposition at Au decorated reduced graphene oxide via a galvanic exchanged process: An electrocatalytic nanocomposite with enhanced mass activity for methanol and ethanol oxidation. J. Mater. Chem. A 2015, 3, 18010–18018.

    Article  Google Scholar 

  7. Akhairi, M. A. F.; Kamarudin, S. K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energ. 2016, 41, 4214–4228.

    Article  Google Scholar 

  8. Kamarudin, M. Z. F.; Kamarudin, S. K.; Masdar, M. S.; Daud, W. R. W. Review: Direct ethanol fuel cells. Int. J. Hydrogen Energ. 2013, 38, 9438–9453.

    Article  Google Scholar 

  9. Erini, N.; Rudi, S.; Beermann, V.; Krause, P.; Yang, R. Z.; Huang, Y. H.; Strasser, P. Exceptional activity of a Pt-Rh-Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2015, 2, 903–908.

    Article  Google Scholar 

  10. Li, H. J.; Wu, H. X.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Synthesis of monodisperse plasmonic Au core-Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal. 2013, 3, 2045–2051.

    Article  Google Scholar 

  11. Guo, S. J.; Dong, S. J.; Wang, E. K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310.

    Article  Google Scholar 

  12. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

    Article  Google Scholar 

  13. Zhao, T.-T.; Wang, H.; Han, X.; Jiang, K.; Lin, H. X.; Xie, Z. X.; Cai, W. B. A comparative investigation of electrocatalysis at Pt monolayers on shape-controlled Au nanocrystals: Facet effect versus strain effect. J. Mater. Chem. A 2016, 4, 15845–15850.

    Article  Google Scholar 

  14. de Souza, J. P. I.; Queiroz, S. L.; Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J. Phys. Chem. B 2002, 106, 9825–9830.

    Article  Google Scholar 

  15. Delpeuch, A. B.; Asset, T.; Chatenet, M.; Cremers, C. Electrooxidation of ethanol at room temperature on carbonsupported Pt and Rh-containing catalysts: A DEMS study. J. Electrochem. Soc. 2014, 161, F918–F924.

    Article  Google Scholar 

  16. Lima, F. H. B.; Profeti, D.; Lizcano-Valbuena, W. H.; Ticianelli, E. A.; Gonzalez, E. R. Carbon-dispersed Pt–Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J. Electroanal. Chem. 2008, 617, 121–129.

    Article  Google Scholar 

  17. Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochim. Acta 2008, 53, 4396–4406.

    Article  Google Scholar 

  18. Delpeuch, A. B.; Maillard, F.; Chatenet, M.; Soudant, P.; Cremers, C. Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Appl. Catal. B: Environ. 2016, 181, 672–680.

    Article  Google Scholar 

  19. Mukherjee, P.; Roy, P. S.; Bhattacharya, S. K. Improved carbonate formation from ethanol oxidation on nickel supported Pt-Rh electrode in alkaline medium at room temperature. Int. J. Hydrogen Energ. 2015, 40, 13357–13367.

    Article  Google Scholar 

  20. Mukherjee, P.; Bagchi, J.; Dutta, S.; Bhattacharya, S. K. The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium. Appl. Catal. A: Gen. 2015, 506, 220–227.

    Article  Google Scholar 

  21. Rizo, R.; Sebastián, D.; Lázaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B: Environ. 2017, 200, 246–254.

    Article  Google Scholar 

  22. Qu, Y. T.; Gao, Y. Z.; Wang, L.; Rao, J. C.; Yin, G. P. Mild synthesis of Pt/SnO2/graphene nanocomposites with remarkably enhanced ethanol electro-oxidation activity and durability. Chem.— Eur. J. 2016, 22, 193–198.

    Article  Google Scholar 

  23. Mello, G. A. B.; Giz, M. J.; Chatenet, M.; Camara, G. A. The electrooxidation of acetaldehyde on platinum-rutheniumrhodium surfaces: A delicate balance between oxidation and carbon–carbon bond breaking. J. Electroanal. Chem. 2016, 765, 73–78.

    Article  Google Scholar 

  24. Jeon, T. Y.; Kim, S. K.; Pinna, N.; Sharma, A.; Park, J.; Lee, S. Y.; Lee, H. C.; Kang, S. W.; Lee, H. K.; Lee, H. H. Selective dissolution of surface nickel close to platinum in PtNi nanocatalyst toward oxygen reduction reaction. Chem. Mater. 2016, 28, 1879–1887.

    Article  Google Scholar 

  25. Li, H.-H.; Cui, C.-H.; Zhao, S.; Yao, H.-B.; Gao, M.-R.; Fan, F.-J.; Yu, S.-H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.

    Article  Google Scholar 

  26. Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.

    Article  Google Scholar 

  27. Erini, N.; Loukrakpam, R.; Petkov, V.; Baranova, E. A.; Yang, R. Z.; Teschner, D.; Huang, Y. H.; Brankovic, S. R.; Strasser, P. Ethanol electro-oxidation on ternary platinumrhodium- tin nanocatalysts: Insights in the atomic 3D structure of the active catalytic phase. ACS Catal. 2014, 4, 1859–1867.

    Article  Google Scholar 

  28. Soares, L. A.; Morais, C.; Napporn, T. W.; Kokoh, K. B.; Olivi, P. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J. Power Sources 2016, 315, 47–55.

    Article  Google Scholar 

  29. Jiang, K. Z.; Bu, L. Z.; Wang, P. T.; Guo, S. J.; Huang, X. Q. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061–15067.

    Article  Google Scholar 

  30. Yang, G. X.; Frenkel, A. I.; Su, D.; Teng, X. W. Enhanced electrokinetics of C–C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell. ChemCatChem 2016, 8, 2876–2880.

    Article  Google Scholar 

  31. Zhu, W.; Ke, J.; Wang, S. B.; Ren, J.; Wang, H. H.; Zhou, Z. Y.; Si, R.; Zhang, Y. W.; Yan, C. H. Shaping singlecrystalline trimetallic Pt-Pd-Rh nanocrystals toward highefficiency C–C splitting of ethanol in conversion to CO2. ACS Catal. 2015, 5, 1995–2008.

    Article  Google Scholar 

  32. Liu, H. M.; Liu, X. Y.; Li, Y. M.; Jia, Y. F.; Tang, Y. W.; Chen, Y. Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res. 2016, 9, 3494–3503.

    Article  Google Scholar 

  33. Liu, X. Y.; Xu, G. R.; Chen, Y.; Lu, T. H.; Tang, Y. W.; Xing, W. A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Sci. Rep. 2015, 5, 7619.

    Article  Google Scholar 

  34. Zhang, L.; Wan, L.; Ma, Y. R.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B: Environ. 2013, 138–139, 229–235.

    Article  Google Scholar 

  35. Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 2012, 22, 23659–23667.

    Article  Google Scholar 

  36. Vondrova, M.; McQueen, T. M.; Burgess, C. M.; Ho, D. M.; Bocarsly, A. B. Autoreduction of Pd−Co and Pt−Co cyanogels: Exploration of cyanometalate coordination chemistry at elevated temperatures. J. Am. Chem. Soc. 2008, 130, 5563–5572.

    Article  Google Scholar 

  37. Deshpande, R. S.; Sharp-Goldman, S. L.; Willson, J. L.; Bocarsly, A. B.; Gross, J.; Finnefrock, A. C.; Gruner, S. M. Morphology and gas adsorption properties of palladium–cobalt-based cyanogels. Chem. Mater. 2003, 15, 4239–4246.

    Article  Google Scholar 

  38. Burgess, C. M.; Vondrova, M.; Bocarsly, A. B. A versatile chemical method for the formation of macroporous transition metal alloys from cyanometalate coordination polymers. J. Mater. Chem. 2008, 18, 3694–3701.

    Article  Google Scholar 

  39. Heibel, M.; Kumar, G.; Wyse, C.; Bukovec, P.; Bocarsly, A. B. Use of sol-gel chemistry for the preparation of cyanogels as ceramic and alloy precursors. Chem. Mater. 1996, 8, 1504–1511.

    Article  Google Scholar 

  40. Pfennig, B. W.; Bocarsly, A. B.; Prud’homme, R. K. Synthesis of a novel hydrogel based on a coordinate covalent polymer network. J. Am. Chem. Soc. 1993, 115, 2661–2665.

    Article  Google Scholar 

  41. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1992.

    Google Scholar 

  42. Wang, L. L.; Zhang, D. F.; Guo, L. Phase-segregated Pt-Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 2014, 6, 4635–4641.

    Article  Google Scholar 

  43. Zhang, J. F.; Li, K. D.; Zhang, B. Synthesis of dendritic Pt–Ni–P alloy nanoparticles with enhanced electrocatalytic properties. Chem. Commun. 2015, 51, 12012–12015.

    Article  Google Scholar 

  44. Zhang, J. F.; Xu, Y.; Zhang, B. Facile synthesis of 3D Pd–P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chem. Commun. 2014, 50, 13451–13453.

    Article  Google Scholar 

  45. Ma, J. W.; Wang, J.; Zhang, G. H.; Fan, X. B.; Zhang, G. L.; Zhang, F. B.; Li, Y. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation. J. Power Sources 2015, 278, 43–49.

    Article  Google Scholar 

  46. Delpeuch, A. B.; Asset, T.; Chatenet, M.; Cremers, C. Influence of the temperature for the ethanol oxidation reaction (EOR) on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C. Fuel Cells 2015, 15, 352–360.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (Nos. 21473111 and 21376122), Fundamental Research Funds for the Central Universities (No. GK201602002), Innovation Foundation of Shenzhen Government (No. JCYJ20160408173202143), the Joint Fund of Energy Storage of Qingdao (No. 20160012), and the Fundamental Research Funds of Huazhong University of Science and Technology (Nos. 3004013109 and 0118013089). We acknowledge the support of Analytical and Testing Center of Huazhong University of Science and Technology for SEM and XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yawen Tang, Bao Yu Xia or Yu Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, J., Wang, L. et al. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Res. 10, 3324–3332 (2017). https://doi.org/10.1007/s12274-017-1545-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1545-z

Keywords

Navigation