Skip to main content
Log in

[C(NH2)3]3PO4·2H2O: A new metal-free ultraviolet nonlinear optical phosphate with large birefringence and second-harmonic generation response

[C(NH2)3]3PO4·2H2O: 一种具有大双折射和大倍频响应的新型无金属紫外磷酸盐非线性光学晶体

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

[PO4]3− possesses small microscopic second-order susceptibility and polarizability anisotropy, which inherently result in weak second-harmonic generation (SHG) and small birefringence. Herein, a new noncentrosymmetric phosphate, [C(NH2)3]3PO4·2H2O, was successfully designed and synthesized by a solution evaporation method. [C(NH2)3]3PO4·2H2O without metal ions is composed of planar conjugated guanidine cations and PO4 tetrahedrons, which are connected by hydrogen bonds, forming a three-dimensional network. Physical property measurements indicate that the title compound displays an SHG response of 1.5 × KH2PO4 (KDP) and a larger birefringence (0.055@546.1 nm) compared with most reported ultraviolet nonlinear optical phosphates. Furthermore, first-principles calculations reveal that the π-conjugated planar [C(NH2)3]+ cations and [PO4]3− groups are responsible for its excellent linear and NLO properties.

摘要

[PO4]3−具有较小的微观二阶极化率和极化各向异性, 这往往导致磷酸盐具有较小的倍频效应和双折射率. 本文采用溶液蒸发法设计并合成了新型非中心对称磷酸盐[C(NH2)3]3PO4·2H2O. 无金属离子的[C(NH2)3]3PO4·2H2O由平面共轭胍阳离子和磷酸根四面体组成, 并通过氢键连接形成三维网络. 物理性能测量表明, 与大多数报道的紫外非线性光学材料中的磷酸盐相比, 标题化合物显示出更大的双折射(0.055@546.1 nm)和大倍频响应(1.5 × KDP). 此外, 第一性原理计算表明, π共轭的平面[C(NH2)3]+阳离子和[PO4]3−基团是其优异的线性和非线性光学特性的来源.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker P. Borate materials in nonlinear optics. Adv Mater, 1998, 10: 979–992

    Article  CAS  Google Scholar 

  2. Chen C, Lin Z, Wang Z. The development of new borate-based UV nonlinear optical crystals. Appl Phys B, 2005, 80: 1–25

    Article  CAS  Google Scholar 

  3. Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955

    Article  CAS  Google Scholar 

  4. Tran TT, Koocher NZ, Rondinelli JM, et al. Beryllium-free β-Rb2 Al2B2O7 as a possible deep-ultraviolet nonlinear optical material replacement for KBe2BO3F2. Angew Chem, 2017, 129: 3015–3019

    Article  Google Scholar 

  5. Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648

    Article  CAS  Google Scholar 

  6. Luo M, Liang F, Song Y, et al. M2B10O14F6 (M = Ca, Sr): Two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J Am Chem Soc, 2018, 140: 3884–3887

    Article  CAS  Google Scholar 

  7. Zou G, Ye N, Huang L, et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J Am Chem Soc, 2011, 133: 20001–20007

    Article  CAS  Google Scholar 

  8. Song Y, Luo M, Lin C, et al. Structural modulation of nitrate group with cations to affect SHG responses in RE(OH)2NO3 (RE = La, Y, and Gd): New polar materials with large NLO effect after adjusting pH values of reaction systems. Chem Mater, 2017, 29: 896–903

    Article  CAS  Google Scholar 

  9. Zhao S, Gong P, Luo S, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3− units. J Am Chem Soc, 2014, 136: 8560–8563

    Article  CAS  Google Scholar 

  10. Chen K, Yang Y, Peng G, et al. A2Bi2(SO4)2Cl4 (A = NH4, K, Rb): achieving a subtle balance of the large second harmonic generation effect and sufficient birefringence in sulfate nonlinear optical materials. J Mater Chem C, 2019, 7: 9900–9907

    Article  CAS  Google Scholar 

  11. Yu H, Zhang W, Young J, et al. Bidenticity-enhanced second harmonic generation from Pb chelation in Pb3Mg3TeP2O14. J Am Chem Soc, 2016, 138: 88–91

    Article  CAS  Google Scholar 

  12. Dong X, Huang L, Hu C, et al. CsSbF2SO4: An excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew Chem Int Ed, 2019, 58: 6528–6534

    Article  CAS  Google Scholar 

  13. Lee H, Ok KM. Na2Mg1−xZnxSiO4 (0 ≤ x ≤ 1): Noncentrosymmetric sodium metal silicate solid solutions with ultraviolet nonlinear optical properties. Bull Korean Chem Soc, 2020, 41: 139–142

    Article  CAS  Google Scholar 

  14. Wu H, Liu S, Cheng S, et al. Syntheses, characterization, and theoretical calculation of Rb2Mg3(P2O7)2 polymorphs with deep-ultraviolet cutoff edges. Sci China Mater, 2020, 63: 593–601

    Article  CAS  Google Scholar 

  15. Lu X, Chen Z, Shi X, et al. Two pyrophosphates with large birefringences and second-harmonic responses as ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2020, 59: 17648–7656

    Article  CAS  Google Scholar 

  16. Yu P, Wu LM, Zhou LJ, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). J Am Chem Soc, 2013, 136: 480–487

    Article  Google Scholar 

  17. Han G, Liu Q, Wang Y, et al. Experimental and theoretical studies on the linear and nonlinear optical properties of lead phosphate crystals LiPbPO4. Phys Chem Chem Phys, 2016, 18: 19123–19129

    Article  CAS  Google Scholar 

  18. Yu H, Young J, Wu H, et al. M4Mg4(P2O7)3 (M = K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chem Mater, 2017, 29: 1845–1855

    Article  CAS  Google Scholar 

  19. Lu J, Yue JN, Xiong L, et al. Uniform alignment of non-π-conjugated species enhances deep ultraviolet optical nonlinearity. J Am Chem Soc, 2019, 141: jacs.9b03858

    Article  Google Scholar 

  20. Zhang B, Han G, Wang Y, et al. Expanding frontiers of ultraviolet nonlinear optical materials with fluorophosphates. Chem Mater, 2018, 30: 5397–5403

    Article  CAS  Google Scholar 

  21. Zhang W, Yu H, Wu H, et al. Phase-matching in nonlinear optical compounds: A materials perspective. Chem Mater, 2017, 29: 2655–2668

    Article  CAS  Google Scholar 

  22. Li L, Wang Y, Lei BH, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J Am Chem Soc, 2016, 138: 9101–9104

    Article  CAS  Google Scholar 

  23. Alekseeva OA, Dudka AP, Novikova NE, et al. Structure of the RbTi0.98Zr0.02OPO4 single crystal at temperatures of 293 and 105 K. Crystallogr Rep, 2008, 53: 557–564

    Article  CAS  Google Scholar 

  24. Babaryk AA, Zatovsky IV, Baumer VN, et al. The complex phosphate K0.92In0.46Nb0.54OPO4: a new representative of the KTiOPO4 family. Acta Crystlogr C Cryst Struct Commun, 2007, 63: i105–i108

    Article  CAS  Google Scholar 

  25. Zumsteg FC, Bierlein JD, Gier TE. KxRb1−xTiOPO4: A new nonlinear optical material. J Appl Phys, 1976, 47: 4980–4985

    Article  CAS  Google Scholar 

  26. Driscoll TA, Perkins PE, Hoffman HJ, et al. Efficient second-harmonic generation in KTP crystals. J Opt Soc Am B, 1986, 3: 683–686

    Article  CAS  Google Scholar 

  27. Mutailipu M, Zhang M, Wu H, et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nat Commun, 2018, 9: 3089

    Article  Google Scholar 

  28. Dong X, Huang L, Liu Q, et al. Perfect balance harmony in Ba2NO3(OH)3: a beryllium-free nitrate as a UV nonlinear optical material. Chem Commun, 2018, 54: 5792–5795

    Article  CAS  Google Scholar 

  29. Zou G, Jo H, Lim SJ, et al. Rb3VO(O2)2CO3: A four-in-one carbonatoperoxovanadate exhibiting an extremely strong second-harmonic generation response. Angew Chem Int Ed, 2018, 57: 8619–8622

    Article  CAS  Google Scholar 

  30. Zou G, Lin Z, Zeng H, et al. Cs3VO(O2)2CO3: an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response. Chem Sci, 2018, 9: 8957–8961

    Article  CAS  Google Scholar 

  31. Zou G, Ok KM Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design. Chem Sci, 2020, 11: 5404–5409

    Article  CAS  Google Scholar 

  32. Mutailipu M, Pan S Emergent deep-ultraviolet nonlinear optical candidates. Angew Chem Int Ed, 2020, 59: 20302–20317

    Article  CAS  Google Scholar 

  33. Luo M, Lin C, Lin D, et al. Rational design of the metal-free KBe2BO3F2·(KBBF) family member C(NH2)3SO3F with ultraviolet optical nonlinearity. Angew Chem Int Ed, 2020, 59: 15978–15981

    Article  CAS  Google Scholar 

  34. Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystlogr, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  35. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  36. Tauc J Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull, 1970, 5: 721–729

    Article  CAS  Google Scholar 

  37. Kubelka P, Munk F. Ein Beitrag zur optik der farbanstriche (Contribution to the optic of paint). Z Tech Phys, 1931, 12: 593–601

    Google Scholar 

  38. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    Article  CAS  Google Scholar 

  39. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist-Cryst Mater, 2005, 220: 567–570

    Article  CAS  Google Scholar 

  40. Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64: 1045–1097

    Article  CAS  Google Scholar 

  41. Lin JS, Qteish A, Payne MC, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 1993, 47: 4174–4180

    Article  CAS  Google Scholar 

  42. Godby RW, Schlüter M, Sham LJ. Self-energy operators and exchange-correlation potentials in semiconductors. Phys Rev B, 1988, 37: 10159–10175

    Article  CAS  Google Scholar 

  43. Russel Raj K, Murugakoothan P. Growth and physical properties of a new crystal for NLO applications: Bisguanidinium hydrogen phosphate monohydrate (G2HP). J Cryst Growth, 2013, 362: 130–134

    Article  CAS  Google Scholar 

  44. Shan P, Sun T, Chen H, et al. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal. Sci Rep, 2016, 6: 25201–25209

    Article  CAS  Google Scholar 

  45. Sun T, Shan P, Chen H, et al. Growth and properties of a noncentrosymmetric polyphosphate CsLa(PO3)4 crystal with deep-ultraviolet transparency. CrystEngComm, 2014, 16: 10497–10504

    Article  CAS  Google Scholar 

  46. Abudoureheman M, Han S, Lei BH, et al. KPb2(PO3)5: a novel nonlinear optical lead polyphosphate with a short deep-UV cutoff edge. J Mater Chem C, 2016, 4: 10630–10637

    Article  CAS  Google Scholar 

  47. Zhao S, Yang X, Yang Y, et al. Non-centrosymmetric RbNaMgP2-O7 with unprecedented thermo-induced enhancement of second harmonic generation. J Am Chem Soc, 2018, 140: 1592–1595

    Article  CAS  Google Scholar 

  48. Bai Z, Liu L, Zhang L, et al. K2SrP4O12: a deep-UV transparent cyclophosphate as a nonlinear optical crystal. Chem Commun, 2019, 55: 8454–8457

    Article  CAS  Google Scholar 

  49. Xu F, Peng G, Lin C, et al. Na3Sc2(PO4)2F3: rational design and synthesis of an alkali rare-earth phosphate fluoride as an ultraviolet nonlinear optical crystal with an enlarged birefringence. J Mater Chem C, 2020, 8: 4965–4972

    Article  CAS  Google Scholar 

  50. Němec I, Matulková I, Held P, et al. Crystal growth, crystal structure, vibrational spectroscopy, linear and nonlinear optical properties of guanidinium phosphates. Optical Mater, 2017, 69: 420–431

    Article  Google Scholar 

  51. Chen J, Xiong L, Chen L, et al. Ba2NaClP2O7: Unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure. J Am Chem Soc, 2018, 140: 14082–14086

    Article  CAS  Google Scholar 

  52. Zhou Y, Cao L, Lin C, et al. AMgPO4·6H2O (A = Rb, Cs): strong SHG responses originated from orderly PO4 groups. J Mater Chem C, 2016, 4: 9219–9226

    Article  CAS  Google Scholar 

  53. Zyss J. Hyperpolarizabilities of substituted conjugated molecules. I. Perturbated INDO approach to monosubstituted benzene. J Chem Phys, 1979, 70: 3333–3340

    Article  CAS  Google Scholar 

  54. Chen C, Wu Y, Li R. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int Rev Phys Chem, 1989, 8: 65–91

    Article  Google Scholar 

  55. Adams JM, Small RWH. The crystal structure of bisguanidinium hydrogen phosphate monohydrate. Acta Crystlogr B Struct Sci, 1976, 32: 832–835

    Article  Google Scholar 

  56. Liu X, Wang X, Yin X, et al. Bulk growth and physical properties of diguanidinium phosphate monohydrate (G2HP) as a multi-functional crystal. CrystEngComm, 2014, 16: 930–938

    Article  CAS  Google Scholar 

  57. Lin J, Lee MH, Liu ZP, et al. Mechanism for linear and nonlinear optical effects in β−BaB2O4 crystals. Phys Rev B, 1999, 60: 13380–13389

    Article  CAS  Google Scholar 

  58. Lin Z, Jiang X, Kang L, et al. First-principles materials applications and design of nonlinear optical crystals. J Phys D-Appl Phys, 2014, 47: 253001

    Article  Google Scholar 

  59. Kleinman DA. Nonlinear dielectric polarization in optical media. Phys Rev, 1962, 126: 1977–1979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975255, 51890862, 21921001 and U1605245), the National Key Research and Development Plan of Ministry of Science and Technology (2016YFB0402104), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), the Natural Science Foundation of Fujian Province (2019J01020758), and Youth Innovation Promotion Association CAS (2019303).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wen X performed the experiments and data analysis, and wrote the paper; Lin C performed the theoretical calculation; Fan H measured the birefringence; Chen K offered help in analyzing experimental data; Luo M revised the manuscript. Ye N guided and supervised the experiments. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Min Luo  (罗敏) or Ning Ye  (叶宁).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xin Wen received her BSc degree from Taiyuan University of Technology in 2018. She is currently a Master student jointly trained by Fuzhou University and Fujian Institute of Research on the Structure of Matter (FJIRSM) under the direction of Professor Ning Ye.

Min Luo received his BSc degree from Central South University in 2011 and PhD degree in material physics and chemistry from the University of Chinese Academy of Sciences in 2016. He has been an associate professor at FJIRSM since 2020. His current research interests include the design, synthesis, and crystal growth of new nonlinear optical materials.

Ning Ye received his BSc degree from Shanghai Jiao Tong University in 1993 and PhD degree in physical chemistry from FJIRSM in 1998 (Director: Academician Chuangtian Chen). From 1999 to 2004, he carried out postdoctoral research at the National University of Singapore, University of Texas at Austin and Oregon State University. He has been a full professor at FJIRSM since 2004. His current research interests include the design and growth of nonlinear optical crystals for deep-UV and mid-IR as well as growth of scintillation crystals.

Electronic supplementary material

40843_2020_1604_MOESM1_ESM.pdf

[C(NH2)3]3PO4·2H2O: A new metal-free ultraviolet nonlinear optical phosphate with large birefringence and second-harmonic generation response

Supplementary material, approximately 648 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Lin, C., Luo, M. et al. [C(NH2)3]3PO4·2H2O: A new metal-free ultraviolet nonlinear optical phosphate with large birefringence and second-harmonic generation response. Sci. China Mater. 64, 2008–2016 (2021). https://doi.org/10.1007/s40843-020-1604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1604-0

Keywords

Navigation