Skip to main content
Log in

Syntheses, characterization, and theoretical calculation of Rb2Mg3(P2O7)2 polymorphs with deep-ultraviolet cutoff edges

拥有深紫外截止边的Rb2Mg3(P2O7)2同质多晶的合成、表征和理论计算

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

By the combination of the isolated P2O7 dimers and MgO4 tetrahedra, α- and β-Rb2Mg3(P2O7)2 polymorphs were synthesized by a high-temperature solution method. α-Rb2Mg3(P2O7)2 crystallizes in non-centrosymmetric space group P212121, while β-Rb2Mg3(P2O7)2 crystallizes in centrosymmetric P21/c. Both structures contain a three dimensional [Mg3P4O14]2− anionic framework, while Rb+ cations are in the space. Structure analyses show that the isolated P2O7 dimers can easily adjust their variable configurations and orientations to fit the different coordination environments of the cations, which is conducive to the formation of polymorphs. The phase transformation process from α- to β-Rb2Mg3(P2O7)2 was further investigated by powder X-ray diffraction and thermal gravimetric/differential scanning calorimetry measurements. In addition, UV-vis-NIR diffusion spectra indicate both materials have deep-ultraviolet cut-off edges (below 190 nm). α-Rb2Mg3(P2O7)2 is second-harmonic generation (SHG)-active and the origin of SHG response was investigated by the SHG density calculations. The first-principle calculations were also carried out to illuminate their structure-property relationships.

摘要

本文结合孤立的P2O7二聚体和MgO4四面体, 采用高温熔液法合成了α和β-Rb2Mg3(P2O7)2同质多晶. α-Rb2Mg3(P2O7)2结晶于非中心对称P212121空间群, β-Rb2Mg3(P2O7)2结晶于中心对称P21/c空间群. 两种结构均含有三维[Mg3P4O14]2−阴离子骨架, 而Rb+离子位于空间中. 结构分析表明, 孤立的P2O7通过调整其可变构型和取向以适合不同配位环境的阳离子, 这有利于同质多晶Rb2Mg3(P2O7)2的形成. 另外, 从α-到β-Rb2Mg3(P2O7)2的相转变过程也可以通过粉末X射线衍射和热重-差热测试被进一步证明. 紫外-可见-近红外漫反射光谱测试表明两种材料都有深紫外截止边(190 nm以下), 并且α-Rb2Mg3(P2O7)2具有倍频效应, 我们通过倍频密度计算研究了其倍频效应的来源. 为了更好地理解上述化合物的结构性能关系, 我们还进行了第一性原理计算.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker P. Borate materials in nonlinear optics. Adv Mater, 1998, 10: 979–992

    CAS  Google Scholar 

  2. Cheng Y, Liu XJ. Three dimensional multilayered acoustic cloak with homogeneous isotropic materials. Appl Phys A, 2009, 94: 25–30

    CAS  Google Scholar 

  3. Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955

    CAS  Google Scholar 

  4. Chen CT, Wu BC, Jiang AD, et al. A new-type ultraviolet SHG crystal—β-BaB2O4 Sci Sin B, 1985, 28:235–243

    Google Scholar 

  5. Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621

    CAS  Google Scholar 

  6. Liang F, Kang L, Lin Z, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord Chem Rev, 2017, 333: 57–70

    CAS  Google Scholar 

  7. Tran TT, Yu H, Rondinelli JM, et al. Deep ultraviolet nonlinear optical materials. Chem Mater, 2016, 28: 5238–5258

    CAS  Google Scholar 

  8. Wang XX, Li XB, Hu CL, et al. Ag4Hg(SeO3)2(SeO4): a novel SHG material created in mixed valent selenium oxides by in situ synthesis. Sci China Mater, 2019, 62: 1821–1830

    Google Scholar 

  9. Xie Z, Wang Y, Cheng S, et al. Synthesis, characterization, and theoretical analysis of three new nonlinear optical materials K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi). Sci China Mater, 2019, 62: 1151–1161

    CAS  Google Scholar 

  10. Yang Y, Gong P, Huang Q, et al. KNa4B2P3O13: A deep-ultraviolet transparent borophosphate exhibiting second-harmonic generation response. Inorg Chem, 2019, 58: 8918–8921

    CAS  Google Scholar 

  11. Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099

    CAS  Google Scholar 

  12. Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648

    CAS  Google Scholar 

  13. Huang J, Guo S, Zhang Z, et al. Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides. Sci China Mater, 2019, 62: 1798–1806

    CAS  Google Scholar 

  14. Wang Y, Zhang B, Yang Z, et al. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 2150–2154

    CAS  Google Scholar 

  15. Chen CT, Sasaki T, Li RK, et al. Nonlinear Optical Borate Crystals: Principles and Applications. Weinheim: Wiley-VCH, 2012

    Google Scholar 

  16. Luo M, Liang F, Song Y, et al. M2B10O14F6 (M = Ca, Sr): Two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J Am Chem Soc, 2018, 140: 3884–3887

    CAS  Google Scholar 

  17. Peng G, Ye N, Lin Z, et al. NH4Be2BO3F2 and γ-Be2BO3F: Overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 8968–8972

    CAS  Google Scholar 

  18. Huang H, Yao J, Lin Z, et al. NaSr3Be3B3O9F4: A promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F]10− anionic group. Angew Chem Int Ed, 2011, 50: 9141–9144

    CAS  Google Scholar 

  19. Wu H, Pan S, Poeppelmeier KR, et al. K3B6O10Cl: A new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133: 7786–7790

    CAS  Google Scholar 

  20. Wu H, Yu H, Yang Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J Am Chem Soc, 2013, 135: 4215–4218

    CAS  Google Scholar 

  21. Zhao S, Kang L, Shen Y, et al. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem. J Am Chem Soc, 2016, 138: 2961–2964

    CAS  Google Scholar 

  22. Wu H, Yu H, Pan S, et al. Deep-ultraviolet nonlinear-optical material K3Sr3Li2Al4B6O20F: Addressing the structural instability problem in KBe2BO3F2. Inorg Chem, 2017, 56: 8755–8758

    CAS  Google Scholar 

  23. Yu H, Young J, Wu H, et al. The next-generation of nonlinear optical materials: Rb3Ba3Li2Al4B6O20F—synthesis, characterization, and crystal growth. Adv Opt Mater, 2017, 5: 1700840

    Google Scholar 

  24. Shen Y, Zhao S, Yang Y, et al. A new KBBF-family nonlinear optical material with strong interlayer bonding. Cryst Growth Des, 2017, 17: 4422–4427

    CAS  Google Scholar 

  25. Meng X, Liang F, Xia M, et al. Beryllium-free nonlinear-optical crystals A3Ba3Li2Ga4B6O20F (A = K and Rb): Members of the Sr2Be2(BO3)2O family with a strong covalent connection between the 2[Li2Ga4B6O20F]9− double layers. Inorg Chem, 2018, 57: 5669–5676

    CAS  Google Scholar 

  26. Yu P, Wu LM, Zhou LJ, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). J Am Chem Soc, 2014, 136: 480–487

    CAS  Google Scholar 

  27. Zhao S, Gong P, Luo S, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge. Angew Chem Int Ed, 2015, 54: 4217–4221

    CAS  Google Scholar 

  28. Li L, Wang Y, Lei BH, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J Am Chem Soc, 2016, 138: 9101–9104

    CAS  Google Scholar 

  29. Shen Y, Yang Y, Zhao S, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation. Chem Mater, 2016, 28: 7110–7116

    CAS  Google Scholar 

  30. Sun T, Shan P, Chen H, et al. Growth and properties of a non-centrosymmetric polyphosphate CsLa(PO3)4 crystal with deep-ultraviolet transparency. CrystEngComm, 2014, 16: 10497–10504

    CAS  Google Scholar 

  31. Belharouak I, Aouad H, Mesnaoui M, et al. Crystal structure and luminescence properties of silver in AgM(PO3)3 (M=Mg, Zn, Ba) polyphosphates. J Solid State Chem, 1999, 145: 97–103

    CAS  Google Scholar 

  32. Trad K, Carlier D, Croguennec L, et al. A layered iron(III) phosphate phase, Na3Fe3(PO4)4: Synthesis, structure, and electrochemical properties as positive electrode in sodium batteries. J Phys Chem C, 2010, 114: 10034–10044

    CAS  Google Scholar 

  33. Essehli R, El Bali B, Benmokhtar S, et al. Synthesis, crystal structure and infrared spectroscopy of a new non-centrosymmetric mixed-anion phosphate Na4Mg3(PO4)2(P2O7). J Alloys Compd, 2010, 493: 654–660

    CAS  Google Scholar 

  34. Kim SC, Lee MS, Kang J, et al. Crystal structure and ion conductivity of a new mixed-anion phosphate LiMg3(PO4)P2O7. J Solid State Chem, 2015, 225: 335–339

    CAS  Google Scholar 

  35. Durif A. Crystal Chemistry of Condensed Phosphates. New York: Plenum Press, 1995

    Google Scholar 

  36. Yu H, Young J, Wu H, et al. M4Mg4(P2O7)3 (M = K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chem Mater, 2017, 29: 1845–1855

    CAS  Google Scholar 

  37. Dunitz JD, Bernstein J. Disappearing polymorphs. Acc Chem Res, 1995, 28: 193–200

    CAS  Google Scholar 

  38. Zhao S, Yang X, Yang Y, et al. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J Am Chem Soc, 2018, 140: 1592–1595

    CAS  Google Scholar 

  39. Inc Madison WI. Bruker, Analytical X-ray Instruments, SAINT, version 7.60A, 2008

  40. Sheldrick GM. SHELXTL, version 6.14. Bruker analytical X ray instruments, Inc., Madison, WI, 2003

    Google Scholar 

  41. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13

    CAS  Google Scholar 

  42. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    CAS  Google Scholar 

  43. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z für Kristallographie — Crystline Mater, 2005, 220: 567–570

    CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  45. Rappe AM, Rabe KM, Kaxiras E, et al. Optimized pseudopotentials. Phys Rev B, 1990, 41: 1227–1230

    CAS  Google Scholar 

  46. Lin JS, Qteish A, Payne MC, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 1993, 47: 4174–4180

    CAS  Google Scholar 

  47. Lu X, Wu R, Jing Q, et al. Non-centrosymmetric BaNaP3O9 with a short deep-ultraviolet cutoff edge. J Alloys Compd, 2018, 764: 170–176

    CAS  Google Scholar 

  48. Chen YG, Xing ML, Liu PF, et al. Two phosphates: non-centrosymmetric Cs6Mg6(PO3)18 and centrosymmetric Cs2MgZn2-(P2O7)2. Inorg Chem, 2017, 56: 845–851

    CAS  Google Scholar 

  49. Harris FE, Monkhorst HJ. Electronic-structure studies of solids. I. fourier representation method for madelung sums. Phys Rev B, 1970, 2: 4400–4405

    Google Scholar 

  50. Nyquist RA, Kagel RO. Infrared Spectra of Inorganic Compounds (3800–45 cm−2). New York: Academic press, 1971

    Google Scholar 

  51. Abudoureheman M, Han S, Wang Y, et al. A3Sr2P7O21 (A = Rb, Cs): Two polyphosphates based on different types of P–O chains and ring structures. Inorg Chem, 2017, 56: 3939–3945

    CAS  Google Scholar 

  52. Chen Z, Fang Y, Zhang W, et al. ALiZnP2O7 (A = Rb, Cs): Two mixed alkali zinc pyrophosphates featuring a [Li2Zn2P4O20]14− an-ionic skeleton. Inorg Chem, 2018, 57: 10568–10575

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51972230, 51802217, 61835014, 51890864 and 51890865), the Natural Science Foundation of Tianjin (19JCZDJC38200), and the National Key Research and Development Project (2016YFB0402103).

Author information

Authors and Affiliations

Authors

Contributions

Wu H, and Liu S performed the experiments, data analysis, and paper writing; Cheng S performed the theoretical data analysis; Yu H, Hu Z, Wang J and Wu Y designed the concept and supervised the experiments. All authors contributed to the general discussion.

Corresponding author

Correspondence to Hongwei Yu  (俞洪伟).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information The supporting data are available in the online version of the paper. Accession Codes: CCDC 1947460 and 1947461 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge viawww.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +441223 336033.

Hongping Wu received her PhD in 2012 from Xinjiang University. In the same year, she started her independent career as an associate professor at Xinjiang Technical Institute of Physics & Chemistry of CAS (XTIPC, CAS). In 2017, she was promoted to a full professor at XTIPC. From 2018, she has been working as a full professor at Tianjin University of Technology. Her current research interest focuses on new NLO materials.

Hongwei Yu received his PhD degree in material physics and chemistry from University of Chinese Academy of Sciences under the direction of Professor Shilie Pan. He did post-doctoral research at Houston University and Northwestern University in USA from 2014 to 2017. From 2018, he has been working as a full professor at Tianjin University of Technology. His current research interests include the design, synthesis, crystal growth, and evaluation of new optical electronic functional materials.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Liu, S., Cheng, S. et al. Syntheses, characterization, and theoretical calculation of Rb2Mg3(P2O7)2 polymorphs with deep-ultraviolet cutoff edges. Sci. China Mater. 63, 593–601 (2020). https://doi.org/10.1007/s40843-019-1221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1221-0

Keywords

Navigation