Skip to main content
Log in

Electronic structure and second-order nonlinear optical property of chiral peropyrenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Discovery of novel materials with excellent second-order nonlinear optical (NLO) properties is a very attractive topic in chemistry and materials science. Recently, much more attention has been paid to chiral compounds due to their inherent asymmetric structure and intramolecular charge transfer. Currently, the density functional theory (DFT) has become a powerful methodology to rationalize experimental observations and to design new materials with desirable properties. In this work, on the basis of the reported chiral peropyrene, we designed another five compounds consisting of donor or acceptor moieties and the donor/acceptor combinations. We systematically studied their geometrical/electronic structures and electronic transition/second-order NLO properties. The measured UV–Vis/CD spectra of compound 1 are almost reproduced by our calculations, enabling us to assign its electronic transition property and absolute configuration. For these compounds, the different substituents have great effect on their photophysical properties (i.e., band gap, absorption wavelength, and NLO response). The charge transfer synergy provides some useful information for further performance improvement. Interestingly, compound 6 shows a remarkably large first hyperpolarizability value of 18.14 × 10−30 esu. Our research enables an opportunity for understanding the structure–property relationship of chiral peropyrenes.

The nonlinear optical properties of the studied compounds were studied with the aid of the DFT calculations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Turitsyn SK, Bednyakova AE, Fedoruk MP et al (2015) Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics 9:608

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sergeyev A, Geiss R, Solntsev AS et al (2015) Enhancing guided second-harmonic light in lithium niobate nanowires. ACS Photonics 2:687–691

    CAS  Google Scholar 

  3. Dalton LR, Sullivan PA, Bale DH (2010) Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev 110:25–55

    CAS  PubMed  Google Scholar 

  4. Luo J, Huang S, Shi Z et al (2011) Tailored organic electro-optic materials and their hybrid systems for device applications. Chem Mater 23:544–553

    CAS  Google Scholar 

  5. Ramya K, Saraswathi NT, Raja CR (2016) Growth and characterization of an organic nonlinear optical material: L-Histidine malonate. Opt Laser Technol 84:102–106

    CAS  Google Scholar 

  6. Lai C-C, Lo C-Y, Huang J-Z et al (2018) Architecting a nonlinear hybrid crystal–glass metamaterial fiber for all-optical photonic integration. J Mater Chem C 6:1659–1669

    CAS  Google Scholar 

  7. Sun H, Wu J, Jiang Z et al (2018) Design, synthesis, and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor. J Mater Chem C 6:2840–2847

    CAS  Google Scholar 

  8. Kamada K, Ueda M, Nagao H et al (2000) Molecular design for organic nonlinear optics: polarizability and hyperpolarizabilities of furan homologues investigated by ab initio molecular orbital method. J Phys Chem A 104:4723–4734

    CAS  Google Scholar 

  9. Hu C, Chen Z, Xiao H et al (2017) Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. J Mater Chem C 5:5111–5118

    CAS  Google Scholar 

  10. Tao K, Wu Z, Han S et al (2018) Switchable behaviors of quadratic nonlinear optical properties originating from bi-step phase transitions in a molecule-based crystal. J Mater Chem C 6:4150–4155

    CAS  Google Scholar 

  11. Edappadikkunnummal S, Nherakkayyil SN, Kuttippurath V et al (2017) Surface Plasmon assisted enhancement in the nonlinear optical properties of phenothiazine by gold nanoparticle. J Phys Chem C 121:26976–26986

    CAS  Google Scholar 

  12. Hu L, Wei D, Huang X (2017) Second harmonic generation property of monolayer TMDCs and its potential application in producing terahertz radiation. J Chem Phys 147:244701

    PubMed  Google Scholar 

  13. Sifain AE, Tadesse LF, Bjorgaard JA et al (2017) Cooperative enhancement of the nonlinear optical response in conjugated energetic materials: a TD-DFT study. J Chem Phys 146:114308

    PubMed  Google Scholar 

  14. Champagne B, Plaquet A, Pozzo J-L et al (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134:8101–8103

    CAS  PubMed  Google Scholar 

  15. Gingras M (2013) One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. Chem Soc Rev 42:1051–1095

    CAS  PubMed  Google Scholar 

  16. Botek E, André J-M, Champagne B et al (2005) Mixed electric-magnetic second-order nonlinear optical response of helicenes. J Chem Phys 122:234713

    PubMed  Google Scholar 

  17. Marks TJ, Ratner MA (1995) Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angew Chem Int Ed Eng 34:155–173

    CAS  Google Scholar 

  18. Kim SY, Lee M, Boo BH (1998) Second molecular hyperpolarizability of 2,2′-diamino-7,7′-dinitro-9,9′- spirobifluorene: an experimental study on third-order nonlinear optical properties of a spiroconjugated dimer. J Chem Phys 109:2593–2595

    CAS  Google Scholar 

  19. Liao J-Z, Chen D-C, Li F et al (2013) From achiral tetrazolate-based tectons to chiral coordination networks: effects of substituents on the structures and NLO properties. CrystEngComm 15:8180–8185

    CAS  Google Scholar 

  20. Wenbo W, Conggang L, Gui Y et al (2012) High-generation second-order nonlinear optical (NLO) dendrimers that contain isolation chromophores: convenient synthesis by using click chemistry and their increased NLO effects. Chem Eur J 18:11019–11028

    Google Scholar 

  21. Cornelis D, Franz E, Asselberghs I et al (2011) Interchromophoric interactions in chiral X-type π-conjugated oligomers: a linear and nonlinear optical study. J Am Chem Soc 133:1317–1327

    CAS  PubMed  Google Scholar 

  22. Verbiest T, Elshocht SV, Kauranen M et al (1998) Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282:913

    CAS  PubMed  Google Scholar 

  23. Haupert LM, Simpson GJ (2009) Chirality in nonlinear optics. Annu Rev Phys Chem 60:345–365

    CAS  PubMed  Google Scholar 

  24. Iazzolino A, Ould Hamouda A, Naïm A et al (2017) Nonlinear optical properties and application of a chiral and photostimulable iron (II) compound. Appl Phys Lett 110:161908

    Google Scholar 

  25. Fischer P, Hache F (2005) Nonlinear optical spectroscopy of chiral molecules. Chirality 17:421–437

    CAS  PubMed  Google Scholar 

  26. Buckley LE, Coe BJ, Rusanova D et al (2017) Ferrocenyl helquats: unusual chiral organometallic nonlinear optical chromophores. Dalton Trans 46:1052–1064

    CAS  PubMed  Google Scholar 

  27. Coe BJ, Rusanova D, Joshi VD et al (2016) Helquat dyes: Helicene-like push–pull systems with large second-order nonlinear optical responses. J Org Chem 81:1912–1920

    CAS  PubMed  Google Scholar 

  28. Gossauer A, Nydegger F, Kiss T et al (2004) Synthesis, chiroptical properties, and solid-state structure determination of two new chiral dipyrrin difluoroboryl chelates. J Am Chem Soc 126:1772–1780

    CAS  PubMed  Google Scholar 

  29. Gossauer A, Fehr F, Nydegger F, Stöckli-Evans H (1997) Synthesis and conformational studies of urobilin difluoroboron complexes. Unprecedented solvent-dependent chiroptical properties of the BF2 chelate of an urobilinoid analogue1. J Am Chem Soc 119:1599–1608

    CAS  Google Scholar 

  30. Toyoda M, Imai Y, Mori T (2016) Propeller chirality of boron heptaaryldipyrromethene: unprecedented supramolecular dimerization and chiroptical properties. J Phys Chem Lett 8:42–48

    PubMed  Google Scholar 

  31. Han X, Zhang J, Huang J et al (2018) Chiral induction in covalent organic frameworks. Nat Commun 9:1294

    PubMed  PubMed Central  Google Scholar 

  32. Nichols VM, Rodriguez MT, Piland GB et al (2013) Assessing the potential of Peropyrene as a singlet fission material: Photophysical properties in solution and the solid state. J Phys Chem C 117:16802–16810

    CAS  Google Scholar 

  33. Martínez-Abadía M, Antonicelli G, Saeki A, Mateo-Alonso A (2018) Readily processable hole-transporting peropyrene gels. Angew Chem Int Ed 57:8209–8213

    Google Scholar 

  34. Wenzel U, Löhmannsröben H-G (1996) Photophysical and fluorescence quenching properties of peropyrene in solution. J Photochem Photobiol A Chem 96:13–18

    CAS  Google Scholar 

  35. Uchida K, Kubo T, Yamanaka D et al (2017) Synthesis, crystal structure, and photophysical properties of 2, 9-disubstituted peropyrene derivatives. Can J Chem 95:432–444

    CAS  Google Scholar 

  36. Yang W, Longhi G, Abbate S et al (2017) Chiral peropyrene: synthesis, structure, and properties. J Am Chem Soc 139:13102–13109

    CAS  PubMed  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, revision E.01. Gaussian, Inc, Wallingford

  38. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  39. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  41. Liu C, Si Y, Shi S et al (2016) Understanding the photophysical properties of chiral dinuclear Re(i) complexes and the role of Re(i) in their complexes. Dalton Trans 45:7285–7293

    CAS  PubMed  Google Scholar 

  42. Liu C, Yang G, Si Y et al (2017) Understanding photophysical properties of chiral conjugated corrals for organic photovoltaics. J Mater Chem C 5:3495–3502

    CAS  Google Scholar 

  43. Si Y, Yang G (2014) Nonplanar donor–acceptor chiral molecules with large second-order optical nonlinearities: 1, 1, 4, 4-tetracyanobuta-1, 3-diene derivatives. J Phys Chem A 118:1094–1102

  44. Jacquemin D, Mennucci B, Adamo C (2011) Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Phys Chem Chem Phys 13:16987–16998

    CAS  PubMed  Google Scholar 

  45. Guido C, Jacquemin D, Adamo C, Mennucci B (2015) Electronic excitations in solution: the interplay between state specific approaches and a time-dependent density functional theory description. J Chem Theory Comput 11:5782–5790

    CAS  PubMed  Google Scholar 

  46. Azarias C, Cupellini L, Belhboub A et al (2018) Modelling excitation energy transfer in covalently linked molecular dyads containing a BODIPY unit and a macrocycle. Phys Chem Chem Phys 20:1993–2008

    CAS  PubMed  Google Scholar 

  47. Jebnouni A, Chemli M, Lévêque P et al (2018) Effects of vinylene and azomethine bridges on optical, theoretical electronic structure and electrical properties of new anthracene and carbazole based π-conjugated molecules. Org Electron 56:96–110

    CAS  Google Scholar 

  48. Azarias C, Pawelek M, Jacquemin D (2017) Structural and optical properties of subporphyrinoids: a TD-DFT study. J Phys Chem A 121:4306–4317

    CAS  PubMed  Google Scholar 

  49. Jacquemin D, Perpete EA, Scuseria GE et al (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135

    CAS  PubMed  Google Scholar 

  50. Mançois F, Sanguinet L, Pozzo J-L et al (2007) Acido-triggered nonlinear optical switches: benzazolo-oxazolidines. J Phys Chem B 111:9795–9802

    PubMed  Google Scholar 

  51. Plaquet A, Guillaume M, Champagne B et al (2008) In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches. Phys Chem Chem Phys 10:6223–6232

    CAS  PubMed  Google Scholar 

  52. de Wergifosse M, de Ruyck J, Champagne B (2014) How the second-order nonlinear optical response of the collagen triple helix appears: a theoretical investigation. J Phys Chem C 118:8595–8602

  53. Beaujean P, Bondu F, Plaquet A et al (2016) Oxazines: a new class of second-order nonlinear optical switches. J Am Chem Soc 138:5052–5062

    CAS  PubMed  Google Scholar 

  54. Chopra P, Carlacci L, King HF, Prasad PN (1989) Ab initio calculations of polarizabilities and second hyperpolarizabilities in organic molecules with extended. pi.-electron conjugation. J Phys Chem 93:7120–7130

    CAS  Google Scholar 

  55. Dapprich S, Frenking G (1995) Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99:9352–9362

    CAS  Google Scholar 

  56. Scalmani G, Frisch MJ, Mennucci B et al (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:094107

    Google Scholar 

  57. Furche F, Ahlrichs R (2004) Time-dependent density functional methods for excited state properties (vol 117, pg 7433, 2002). J Chem Phys 121:12772–12773

    CAS  Google Scholar 

  58. Jacquemin D, Adamo C (2012) Basis set and functional effects on excited-state properties: three bicyclic chromogens as working examples. Int J Quantum Chem 112:2135–2141

    CAS  Google Scholar 

  59. Li X (2018) Design of novel graphdiyne-based materials with large second-order nonlinear optical properties. J Mater Chem C 6:7576–7583

    CAS  Google Scholar 

  60. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    CAS  Google Scholar 

  61. Chen J-L, Hong J-T, Wu K-J, Hu W-P (2009) The MC-DFT approach to the M06-2X, B2K-PLYP, and B2T-PLYP functionals. Chem Phys Lett 468:307–312

    CAS  Google Scholar 

  62. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    CAS  Google Scholar 

  63. Goerigk L, Hansen A, Bauer C et al (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19:32184–32215

    CAS  PubMed  Google Scholar 

  64. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615

    CAS  PubMed  Google Scholar 

  65. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    CAS  Google Scholar 

  66. Pedone A (2013) Role of solvent on charge transfer in 7-aminocoumarin dyes: new hints from TD-CAM-B3LYP and state specific PCM calculations. J Chem Theory Comput 9:4087–4096

    CAS  PubMed  Google Scholar 

  67. Nayyar IH, Masunov AE, Tretiak S (2013) Comparison of TD-DFT methods for the calculation of two-photon absorption spectra of oligophenylvinylenes. J Phys Chem C 117:18170–18189

    CAS  Google Scholar 

  68. Kodikara MS, Stranger R, Humphrey MG (2018) Long-range corrected DFT calculations of first hyperpolarizabilities and excitation energies of metal alkynyl complexes. ChemPhysChem 19:1537–1546

    CAS  PubMed  Google Scholar 

  69. Torrent-Sucarrat M, Anglada J, Luis J (2011) Evaluation of the nonlinear optical properties for annulenes with Huckel and Mobius topologies. J Chem Theory Comput 7:3935–3943

  70. de Wergifosse M, Champagne B (2011) Electron correlation effects on the first hyperpolarizability of push-pull pi-conjugated systems. J Chem Phys 134:074113

    PubMed  Google Scholar 

  71. Jacquemin D, Perpète EA, Medved’ M et al (2007) First hyperpolarizability of polymethineimine with long-range corrected functionals. J Chem Phys 126:191108

    PubMed  Google Scholar 

  72. Champagne B, Perpete EA, Jacquemin D et al (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper) polarizabilities of push− pull π-conjugated systems. J Phys Chem A 104:4755–4763

    CAS  Google Scholar 

  73. David R. Kanis, Mark A. Ratner, Tobin J. Marks, (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chemical Reviews 94 (1):195-242

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China under Nos. 21573037, 21873017, 11704062, 11534003, and 51732003, the Postdoctoral Science Foundation of China under grant 2013 M541283, the Natural Science Foundation of Jilin Province (20150101042JC and 20190201231JC), and the Education Department of Jilin Province, China, under Grant number 2016511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guochun Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Liu, C., Du, X. et al. Electronic structure and second-order nonlinear optical property of chiral peropyrenes. J Mol Model 25, 220 (2019). https://doi.org/10.1007/s00894-019-4106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4106-4

Keywords

Navigation