Skip to main content
Log in

Biomass-derived carbon materials with structural diversities and their applications in energy storage

生物质衍生碳材料的结构多样性及其在能量存储方面的应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Currently, carbon materials, such as graphene, carbon nanotubes, activated carbon, porous carbon, have been successfully applied in energy storage area by taking advantage of their structural and functional diversity. However, the development of advanced science and technology has spurred demands for green and sustainable energy storage materials. Biomass-derived carbon, as a type of electrode materials, has attracted much attention because of its structural diversities, adjustable physical/chemical properties, environmental friendliness and considerable economic value. Because the nature contributes the biomass with bizarre microstructures, the biomass-derived carbon materials also show naturally structural diversities, such as 0D spherical, 1D fibrous, 2D lamellar and 3D spatial structures. In this review, the structure design of biomass-derived carbon materials for energy storage is presented. The effects of structural diversity, porosity and surface heteroatom doping of biomass-derived carbon materials in supercapacitors, lithium-ion batteries and sodium-ion batteries are discussed in detail. In addition, the new trends and challenges in biomass-derived carbon materials have also been proposed for further rational design of biomass-derived carbon materials for energy storage.

摘要

目前, 碳材料依靠其自身结构和功能的多样性, 已成功地应用于能源储存领域. 先进科学与技术的发展促使我们对绿色和可持续的 储能材料需求越来越迫切, 生物质衍生碳因其结构的多样性、可调节的物理/化学性质、环境友好和价格低廉而引起人们的广泛关注. 由 于自然界赋予生物质奇异的微观结构, 导致其衍生碳材料也显示出结构多样性, 如零维的球形、一维的纤维、二维的片层和三维的空间 结构. 本综述介绍了生物质衍生碳材料的结构多样性, 多孔特性, 表面改性和杂原子掺杂, 及其在超级电容器、锂离子电池和钠离子电池 中的应用, 并提出未来发展的趋势和挑战.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X, Li C, Grätzel M, et al. Nanomaterials for renewable energy production and storage. Chem Soc Rev, 2012, 41: 7909–7937

    Article  CAS  Google Scholar 

  2. Wang H, Yang Y, Guo L. Renewable-biomolecule-based electrochemical energy-storage materials. Adv Energy Mater, 2017, 7: 1700663

    Article  CAS  Google Scholar 

  3. Liu J, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage. Sci China Mater, 2016, 59: 459–474

    CAS  Google Scholar 

  4. Zhang Y, Liu X, Wang S, et al. Bio-nanotechnology in highperformance supercapacitors. Adv Energy Mater, 2017, 7: 1700592

    Article  CAS  Google Scholar 

  5. Enock TK, King’ondu CK, Pogrebnoi A, et al. Status of biomass derived carbon materials for supercapacitor application. Int J Electrochem, 2017, 2017: 1–14

    Article  CAS  Google Scholar 

  6. Zhang S, Pan N. Supercapacitors performance evaluation. Adv Energy Mater, 2015, 5: 1401401

    Article  CAS  Google Scholar 

  7. Wu Z, Zhang X. N, O-codoped porous carbon nanosheets for capacitors with ultra-high capacitance. Sci China Mater, 2016, 59: 547–557

    Article  CAS  Google Scholar 

  8. Tang W, Zhang Y, Zhong Y, et al. Natural biomass-derived carbons for electrochemical energy storage. Mater Res Bull, 2017, 88: 234–241

    Article  CAS  Google Scholar 

  9. Hou H, Qiu X, Wei W, et al. Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater, 2017, 114: 1602898

    Article  CAS  Google Scholar 

  10. Liu H, Liu X, Li W, et al. Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater, 2017, 414: 1700283

    Article  CAS  Google Scholar 

  11. Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater, 2014, 26: 2219–2251

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang H, Lin Z, et al. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater, 2016, 59: 475–494

    Article  CAS  Google Scholar 

  13. Wen L, Li F, Cheng HM. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater, 2016, 28: 4306–4337

    Article  CAS  Google Scholar 

  14. Guo X, Zheng S, Zhang G, et al. Nanostructured graphene-based materials for flexible energy storage. Energy Storage Mater, 2017, 9: 150–169

    Article  Google Scholar 

  15. Zheng S, Wu ZS, Wang S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater, 2017, 6: 70–97

    Article  Google Scholar 

  16. Wu H, Zhang Y, Cheng L, et al. Graphene based architectures for electrochemical capacitors. Energy Storage Mater, 2016, 5: 8–32

    Article  Google Scholar 

  17. Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res, 2002, 35: 1035–1044

    Article  CAS  Google Scholar 

  18. Hummers Jr. WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339–1339

    Article  CAS  Google Scholar 

  19. Shao Y, El-Kady MF, Wang LJ, et al. Graphene-based materials for flexible supercapacitors. Chem Soc Rev, 2015, 44: 3639–3665

    Article  CAS  Google Scholar 

  20. Imtiaz S, Zhang J, Zafar ZA, et al. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci China Mater, 2016, 59: 389–407

    Article  CAS  Google Scholar 

  21. Gaddam RR, Yang D, Narayan R, et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy, 2016, 26: 346–352

    Article  CAS  Google Scholar 

  22. Yan D, Yu C, Zhang X, et al. Nitrogen-doped CMs derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim Acta, 2016, 191: 385–391

    Article  CAS  Google Scholar 

  23. Ogale AA, Zhang M, Jin J. Recent advances in carbon fibers derived from biobased precursors. J Appl Polym Sci, 2016, 133: 43794

    Article  CAS  Google Scholar 

  24. Lai F, Miao YE, Zuo L, et al. Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small, 2016, 12: 3235–3244

    Article  CAS  Google Scholar 

  25. Yu H, Zhang W, Li T, et al. Capacitive performance of porous carbon nanosheets derived from biomass cornstalk. RSC Adv, 2017, 7: 1067–1074

    Article  CAS  Google Scholar 

  26. Zhou X, Chen F, Bai T, et al. Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem, 2016, 18: 2078–2088

    Article  CAS  Google Scholar 

  27. Zhang W, Lin H, Lin Z, et al. 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile templatefree method. ChemSusChem, 2015, 8: 2114–2122

    Article  CAS  Google Scholar 

  28. Fan YM, Song WL, Li X, et al. Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon, 2017, 111: 658–666

    Article  CAS  Google Scholar 

  29. Wu XL, Wen T, Guo HL, et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano, 2013, 7: 3589–3597

    Article  CAS  Google Scholar 

  30. Deng J, Li M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem, 2016, 18: 4824–4854

    Article  CAS  Google Scholar 

  31. Wang J, Nie P, Ding B, et al. Biomass derived carbon for energy storage devices. J Mater Chem A, 2017, 5: 2411–2428

    Article  CAS  Google Scholar 

  32. Chen Y, Shi J. Mesoporous carbon biomaterials. Sci China Mater, 2015, 58: 241–257

    Article  CAS  Google Scholar 

  33. Zheng X, Luo J, Lv W, et al. Two-dimensional porous carbon: synthesis and ion-transport properties. Adv Mater, 2015, 27: 5388–5395

    Article  CAS  Google Scholar 

  34. Liu B, Liu Y, Chen H, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources, 2017, 341: 309–317

    Article  CAS  Google Scholar 

  35. Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater, 2016, 26: 111–119

    Article  CAS  Google Scholar 

  36. Gao Z, Zhang Y, Song N, et al. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett, 2016, 5: 69–88

    Article  CAS  Google Scholar 

  37. Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A, 2015, 3: 71–77

    Article  CAS  Google Scholar 

  38. Gong Y, Xie L, Li H, et al. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant. Chem Commun, 2014, 50: 12633–12636

    Article  CAS  Google Scholar 

  39. Li Y, Wang Z, Li L, et al. Preparation of nitrogen-and phosphorous co-doped CMs and their superior performance as anode in sodium-ion batteries. Carbon, 2016, 99: 556–563

    Article  CAS  Google Scholar 

  40. Zhao Y, Meng Y, Jiang P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. J Power Sources, 2014, 259: 219–226

    Article  CAS  Google Scholar 

  41. Falco C, Baccile N, Titirici MM. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem, 2011, 13: 3273–3281

    Article  CAS  Google Scholar 

  42. Górka J, Vix-Guterl C, Matei Ghimbeu C. Recent progress in design of biomass-derived hard carbons for sodium ion batteries. C, 2016, 2:24

    Google Scholar 

  43. Liu Y, Cai X, Luo B, et al. MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes. Carbon, 2016, 107: 426–432

    Article  CAS  Google Scholar 

  44. Fan Y, Liu PF, Yang ZJ, et al. Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation. Electrochim Acta, 2015, 163: 140–148

    Article  CAS  Google Scholar 

  45. Mao C, Liu S, Pang L, et al. Ultrathin MnO2 nanosheets grown on fungal conidium-derived hollow carbon spheres as supercapacitor electrodes. RSC Adv, 2016, 6: 5184–5191

    Article  CAS  Google Scholar 

  46. Yu YN, Wang MQ, Bao SJ. Biomass-derived synthesis of nitrogen and phosphorus co-doped mesoporous carbon spheres as catalysts for oxygen reduction reaction. J Solid State Electrochem, 2016, 21: 103–110

    Article  CAS  Google Scholar 

  47. Tang H, Wang M, Lu T, et al. Porous carbon spheres as anode materials for sodium ion batteries with high capacity and long cycling life. Ceramics Int, 2017, 43: 4475–4482

    Article  CAS  Google Scholar 

  48. Gao S, Chen Y, Fan H, et al. Large scale production of biomassderived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J Mater Chem A, 2014, 2: 3317–3324

    Article  CAS  Google Scholar 

  49. Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27: 482–491

    Article  CAS  Google Scholar 

  50. Falco C, Sieben JM, Brun N, et al. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem, 2013, 6: 374–382

    Article  CAS  Google Scholar 

  51. Tang K, Fu L, White RJ, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater, 2012, 2: 873–877

    Article  CAS  Google Scholar 

  52. Tang K, White RJ, Mu X, et al. Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem, 2012, 5: 400–403

    Article  CAS  Google Scholar 

  53. Jin Y, Tian K, Wei L, et al. Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. J Mater Chem A, 2016, 4: 15968–15979

    Article  CAS  Google Scholar 

  54. Wei X, Li Y, Gao S. Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J Mater Chem A, 2017, 5: 181–188

    Article  CAS  Google Scholar 

  55. He S, Chen W. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J Power Sources, 2015, 294: 150–158

    Article  CAS  Google Scholar 

  56. Hu X, Xiong W, Wang W, et al. Hierarchical manganese dioxide/poly(3,4-ethylenedioxythiophene) core–shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solidstate supercapacitor. ACS Sustain Chem Eng, 2016, 4: 1201–1211

    Article  CAS  Google Scholar 

  57. Jiang Q, Zhang Z, Yin S, et al. Biomass carbon micro/nanostructures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci, 2016, 379: 73–82

    Article  CAS  Google Scholar 

  58. Wei T, Wei X, Gao Y, et al. Large scale production of biomassderived nitrogen-doped porous carbon materials for supercapacitors. Electrochim Acta, 2015, 169: 186–194

    Article  CAS  Google Scholar 

  59. Liu B, Zhou X, Chen H, et al. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim Acta, 2016, 208: 55–63

    Article  CAS  Google Scholar 

  60. Long C, Qi D, Wei T, et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv Funct Mater, 2014, 24: 3953–3961

    Article  CAS  Google Scholar 

  61. Shan D, Yang J, Liu W, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A, 2016, 4: 13589–13602

    Article  CAS  Google Scholar 

  62. Hao X, Wang J, Ding B, et al. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J Power Sources, 2017, 352: 34–41

    Article  CAS  Google Scholar 

  63. Jiang Y, Yan J, Wu X, et al. Facile synthesis of carbon nanofibersbridged porous carbon nanosheets for high-performance supercapacitors. J Power Sources, 2016, 307: 190–198

    Article  CAS  Google Scholar 

  64. Wang X, Kong D, Zhang Y, et al. All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale, 2016, 8: 9146–9150

    Article  CAS  Google Scholar 

  65. Zhao PY, Guo Y, Yu BJ, et al. Biotechnology humic acids-based electrospun carbon nanofibers as cost-efficient electrodes for lithium-ion batteries. Electrochim Acta, 2016, 203: 66–73

    Article  CAS  Google Scholar 

  66. Dallmeyer I, Lin LT, Li Y, et al. Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng, 2014, 299: 540–551

    Article  CAS  Google Scholar 

  67. Berenguer R, García-Mateos FJ, Ruiz-Rosas R, et al. Biomassderived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem, 2016, 18: 1506–1515

    Article  CAS  Google Scholar 

  68. Li D, Lv C, Liu L, et al. Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous n-doped carbon nanofibers for efficient catalysis and energy storage. ACS Cent Sci, 2015, 1: 261–269

    Article  CAS  Google Scholar 

  69. Qiu H, Wang Y, Liu Y, et al. Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. J Porous Mater, 2016, 24: 551–557

    Article  CAS  Google Scholar 

  70. Wang M, Yang Z, Li W, et al. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small, 2016, 12: 2559–2566

    Article  CAS  Google Scholar 

  71. Huang Y, Lin Z, Zheng M, et al. Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources, 2016, 307: 649–656

    Article  CAS  Google Scholar 

  72. You J, Li M, Ding B, et al. Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv Mater, 2017, 29: 1606895

    Article  CAS  Google Scholar 

  73. Liu Y, Shi Z, Gao Y, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces, 2016, 8: 28283–28290

    Article  CAS  Google Scholar 

  74. Cheng P, Li T, Yu H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C, 2016, 120: 2079–2086

    Article  CAS  Google Scholar 

  75. Shen W, Hu T, Wang P, et al. Hollow porous carbon fiber from cotton with nitrogen doping. ChemPlusChem, 2014, 79: 284–289

    Article  CAS  Google Scholar 

  76. Wang C, Huang J, Qi H, et al. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. J Power Sources, 2017, 358: 85–92

    Article  CAS  Google Scholar 

  77. Wei Y. Activated carbon microtubes prepared from plant biomass (poplar catkins) and their application for supercapacitors. Chem Lett, 2014, 43: 216–218

    Article  CAS  Google Scholar 

  78. Xie L, Sun G, Su F, et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A, 2016, 4: 1637–1646

    Article  CAS  Google Scholar 

  79. Zhang X, Zhang K, Li H, et al. Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors. J Power Sources, 2017, 344: 176–184

    Article  CAS  Google Scholar 

  80. Wang K, Yan R, Zhao N, et al. Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. Mater Lett, 2016, 174: 249–252

    Article  CAS  Google Scholar 

  81. Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 2016, 19: 165–175

    Article  CAS  Google Scholar 

  82. Wang K, Zhao N, Lei S, et al. Promising biomass-based activated carbons derived from willow catkins for high performance su-percapacitors. Electrochim Acta, 2015, 166: 1–11

    Article  CAS  Google Scholar 

  83. Dong Y, Wang W, Quan H, et al. Nitrogen-doped foam-like carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors. ChemElectroChem, 2016, 3: 814–821

    Article  CAS  Google Scholar 

  84. Qu Y, Zan G, Wang J, et al. Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co(OH) (CO3)0.5 nano-cone-arrays for high-performance supercapacitors. J Mater Chem A, 2016, 4: 4296–4304

    Article  CAS  Google Scholar 

  85. Ojha K, Kumar B, Ganguli AK. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J Chem Sci, 2017, 129: 397–404

    Article  CAS  Google Scholar 

  86. Chen F, Yang J, Bai T, et al. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J Electroanal Chem, 2016, 768: 18–26

    Article  CAS  Google Scholar 

  87. Wang H, Xu Z, Kohandehghan A, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano, 2013, 7: 5131–5141

    Article  CAS  Google Scholar 

  88. Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A, 2013, 1: 6462–6470

    Article  CAS  Google Scholar 

  89. Tian W, Gao Q, Tan Y, et al. Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon, 2017, 119: 287–295

    Article  CAS  Google Scholar 

  90. Mondal AK, Kretschmer K, Zhao Y, et al. Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chem Eur J, 2017, 23: 3683–3690

    Article  CAS  Google Scholar 

  91. Chen C, Yu D, Zhao G, et al. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy, 2016, 27: 377–389

    Article  CAS  Google Scholar 

  92. Hao E, Liu W, Liu S, et al. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J Mater Chem A, 2017, 5: 2204–2214

    Article  CAS  Google Scholar 

  93. Wu K, Gao B, Su J, et al. Large and porous carbon sheets derived from water hyacinth for high-performance supercapacitors. RSC Adv, 2016, 6: 29996–30003

    Article  CAS  Google Scholar 

  94. Xu J, Gao Q, Zhang Y, et al. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci Rep, 2014, 4: 5545

    Article  CAS  Google Scholar 

  95. Park MH, Yun YS, Cho SY, et al. Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors. Carbon Lett, 2016, 19: 66–71

    Article  Google Scholar 

  96. Yang T, Qian T, Wang M, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater, 2016, 28: 539–545

    Article  CAS  Google Scholar 

  97. Li Z, Lv W, Zhang C, et al. A sheet-like porous carbon for highrate supercapacitors produced by the carbonization of an eggplant. Carbon, 2015, 92: 11–14

    Article  CAS  Google Scholar 

  98. Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015, 9: 2556–2564

    Article  CAS  Google Scholar 

  99. Wang J, Shen L, Xu Y, et al. Lamellar-structured biomass-derived phosphorus-and nitrogen-co-doped porous carbon for highperformance supercapacitors. New J Chem, 2015, 39: 9497–9503

    Article  CAS  Google Scholar 

  100. Ling Z, Yu C, Fan X, et al. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology, 2015, 26: 374003

    Article  CAS  Google Scholar 

  101. An HJ, Kim NR, Song MY, et al. Fallen-leaf-derived microporous pyropolymers for supercapacitors. J Industrial Eng Chem, 2017, 45: 223–228

    Article  CAS  Google Scholar 

  102. Tian X, Ma H, Li Z, et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sources, 2017, 359: 88–96

    Article  CAS  Google Scholar 

  103. Zhu G, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9: 1237–1243

    Article  CAS  Google Scholar 

  104. Fan Y, Liu P, Zhu B, et al. Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int J Hydrogen Energy, 2015, 40: 6188–6196

    Article  CAS  Google Scholar 

  105. Sun F, Gao J, Zhu Y, et al. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Sci Rep, 2017, 7: 40990

    Article  CAS  Google Scholar 

  106. Liang T, Chen C, Li X, et al. Popcorn-derived porous carbon for energy storage and CO2 capture. Langmuir, 2016, 32: 8042–8049

    Article  CAS  Google Scholar 

  107. Liu C, Han G, Chang Y, et al. Properties of porous carbon derived from cornstalk core in high-performance electrochemical capacitors. ChemElectroChem, 2016, 3: 323–331

    Article  CAS  Google Scholar 

  108. Qiu X, Wang L, Zhu H, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 2017, 9: 7408–7418

    Article  CAS  Google Scholar 

  109. Jiang L, Sheng L, Chen X, et al. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J Mater Chem A, 2016, 4: 11388–11396

    Article  CAS  Google Scholar 

  110. Jain A, Xu C, Jayaraman S, et al. Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater, 2015, 218: 55–61

    Article  CAS  Google Scholar 

  111. Liou TH. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J, 2010, 158: 129–142

    Article  CAS  Google Scholar 

  112. Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large SSA and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36: 322–330

    Article  CAS  Google Scholar 

  113. Feng H, Hu H, Dong H, et al. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources, 2016, 302: 164–173

    Article  CAS  Google Scholar 

  114. Liu J, Deng Y, Li X, et al. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomassbased waste for high performance supercapacitors. ACS Sustain Chem Eng, 2016, 4: 177–187

    Article  CAS  Google Scholar 

  115. Hong X, Hui KS, Zeng Z, et al. Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochim Acta, 2014, 130: 464–469

    Article  CAS  Google Scholar 

  116. Zhu Z, Jiang H, Guo S, et al. Dual tuning of biomass-derived hierarchical carbon nanostructures for supercapacitors: the role of balanced meso/microporosity and graphene. Sci Rep, 2015, 5: 15936

    Article  CAS  Google Scholar 

  117. Long C, Chen X, Jiang L, et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015, 12: 141–151

    Article  CAS  Google Scholar 

  118. Wang H, Ren D, Zhu Z, et al. Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries. Chem Eng J, 2016, 288: 179–184

    Article  CAS  Google Scholar 

  119. Li H, Yuan D, Tang C, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon, 2016, 100: 151–157

    Article  CAS  Google Scholar 

  120. Zhuo H, Hu Y, Tong X, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Industrial Crops Products, 2016, 87: 229–235

    Article  CAS  Google Scholar 

  121. Ou J, Yang L, Zhang Z, et al. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. J Power Sources, 2016, 333: 193–202

    Article  CAS  Google Scholar 

  122. Tian Z, Xiang M, Zhou J, et al. Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim Acta, 2016, 211: 225–233

    Article  CAS  Google Scholar 

  123. Yu W, Wang H, Liu S, et al. N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A, 2016, 4: 5973–5983

    Article  CAS  Google Scholar 

  124. Zhang C, Zhu X, Cao M, et al. Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors. ChemSusChem, 2016, 9: 932–937

    Article  CAS  Google Scholar 

  125. Zhao YQ, Lu M, Tao PY, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources, 2016, 307: 391–400

    Article  CAS  Google Scholar 

  126. Yang X, Li C, Chen Y. Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application. J Phys D-Appl Phys, 2017, 50: 055501

    Article  CAS  Google Scholar 

  127. Cai Y, Luo Y, Xiao Y, et al. Facile synthesis of three-dimensional heteroatom-doped and hierarchical egg-box-like carbons derived from moringa oleifera branches for high-performance supercapacitors. ACS Appl Mater Interfaces, 2016, 8: 33060–33071

    Article  CAS  Google Scholar 

  128. Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci, 2013, 6: 2839–2855

    Article  CAS  Google Scholar 

  129. Zhou X, Li H, Yang J. Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes. J Energy Chem, 2016, 25: 35–40

    Article  Google Scholar 

  130. Long C, Jiang L, Wu X, et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon, 2015, 93: 412–420

    Article  CAS  Google Scholar 

  131. Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. J Mater Chem A, 2016, 4: 9832–9843

    Article  CAS  Google Scholar 

  132. Qu J, Geng C, Lv S, et al. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim Acta, 2015, 176: 982–988

    Article  CAS  Google Scholar 

  133. Gao F, Qu J, Zhao Z, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim Acta, 2016, 190: 1134–1141

    Article  CAS  Google Scholar 

  134. Ma G, Yang Q, Sun K, et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresource Tech, 2015, 197: 137–142

    Article  CAS  Google Scholar 

  135. Alshareef NH, Whitehair D, Xia C. The impact of surface chemistry on bio-derived carbon performance as supercapacitor electrodes. J Electron Mater, 2016, 46: 1628–1636

    Article  CAS  Google Scholar 

  136. Wu X, Jiang L, Long C, et al. From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy, 2015, 13: 527–536

    Article  CAS  Google Scholar 

  137. Li Z, Xu Z, Tan X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci, 2013, 6: 871–878

    Article  CAS  Google Scholar 

  138. Li J, Liu K, Gao X, et al. Oxygen-and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl Mater Interfaces, 2015, 7: 24622–24628

    Article  CAS  Google Scholar 

  139. Chen L, Ji T, Mu L, et al. Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon, 2017, 111: 839–848

    Article  CAS  Google Scholar 

  140. Zhao Y, Ran W, He J, et al. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl Mater Interfaces, 2015, 7: 1132–1139

    Article  CAS  Google Scholar 

  141. Zhang LL, Li HH, Shi YH, et al. A novel layered sedimentary rocks structure of the oxygen-enriched carbon for ultrahigh-rateperformance supercapacitors. ACS Appl Mater Interfaces, 2016, 8: 4233–4241

    Article  CAS  Google Scholar 

  142. Feng W, He P, Ding S, et al. Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors. RSC Adv, 2016, 6: 5949–5956

    Article  CAS  Google Scholar 

  143. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, et al. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Tech, 2012, 111: 185–190

    Article  CAS  Google Scholar 

  144. Yi J, Qing Y, Wu CT, et al. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sources, 2017, 351: 130–137

    Article  CAS  Google Scholar 

  145. Wang P, Qiao B, Du Y, et al. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C, 2015, 119: 21336–21344

    Article  CAS  Google Scholar 

  146. Wu L, Buchholz D, Vaalma C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem, 2016, 3: 292–298

    Article  CAS  Google Scholar 

  147. Sun L, Fu Y, Tian C, et al. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors. ChemSusChem, 2014, 7: 1637–1646

    Article  CAS  Google Scholar 

  148. Xu G, Han J, Ding B, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem, 2015, 17: 1668–1674

    Article  CAS  Google Scholar 

  149. Zhao H, Gao Y, Wang J, et al. Egg yolk-derived phosphorus and nitrogen dual doped nano carbon capsules for high-performance lithium ion batteries. Mater Lett, 2016, 167: 93–97

    Article  CAS  Google Scholar 

  150. Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev, 2007, 11: 1966–2005

    Article  CAS  Google Scholar 

  151. Wang K, Cao Y, Wang X, et al. Rod-shape porous carbon derived from aniline modified lignin for symmetric supercapacitors. J Power Sources, 2016, 307: 462–467

    Article  CAS  Google Scholar 

  152. Wang P, Wang Q, Zhang G, et al. Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes. J Solid State Electrochem, 2015, 20: 319–325

    Article  CAS  Google Scholar 

  153. Wu K, Fu J, Zhang X, et al. Three-dimensional flexible carbon electrode for symmetrical supercapacitors. Mater Lett, 2016, 185: 193–196

    Article  CAS  Google Scholar 

  154. Fan Z, Qi D, Xiao Y, et al. One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Mater Lett, 2013, 101: 29–32

    Article  CAS  Google Scholar 

  155. Bommier C, Xu R, Wang W, et al. Self-activation of cellulose: a new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy, 2015, 13: 709–717

    Article  CAS  Google Scholar 

  156. Biswal M, Banerjee A, Deo M, et al. From dead leaves to high energy density supercapacitors. Energy Environ Sci, 2013, 6: 1249–1259

    Article  CAS  Google Scholar 

  157. Zhang Y, Liu S, Zheng X, et al. Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater, 2017, 27: 1604687

    Article  CAS  Google Scholar 

  158. Sackur O. Die anwendung hoher drucke bei chemischen vorgängen und eine nachbildung des entstehungsprozesses der steinkohle. Von friedrich bergius. 58 S. und 4 abbildungen. Verlag von wilhelm knapp, halle a. S. 1913. Preis geb. 2,80 MK. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1914, 20: 260?260

    Google Scholar 

  159. Berl E, Schmidt A. Über die entstehung der kohlen. II. die inkohlung von cellulose und lignin in neutralem medium. Justus Liebigs Ann Chem, 1932, 493: 97–123

    Article  CAS  Google Scholar 

  160. Fuertes AB, Sevilla M. Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes. Chem-SusChem, 2015, 8: 1049–1057

    CAS  Google Scholar 

  161. Zhu H, Wang X, Yang F, et al. Promising carbons for supercapacitors derived from fungi. Adv Mater, 2011, 23: 2745–2748

    Article  CAS  Google Scholar 

  162. Wei T, Zhang Q, Wei X, et al. A facile and low-cost route to heteroatom doped porous carbon derived from broussonetia papyrifera bark with excellent supercapacitance and CO2 capture performance. Sci Rep, 2016, 6: 22646

    Article  CAS  Google Scholar 

  163. Manyala N, Bello A, Barzegar F, et al. Coniferous pine biomass: a novel insight into sustainable carbon materials for supercapacitors electrode. Mater Chem Phys, 2016, 182: 139–147

    Article  CAS  Google Scholar 

  164. Hu B, Wang K, Wu L, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater, 2010, 22: 813–828

    Article  CAS  Google Scholar 

  165. Xue Y, Gao B, Yao Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J, 2012, 200-202: 673–680

    Article  CAS  Google Scholar 

  166. Parshetti GK, Kent Hoekman S, Balasubramanian R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresource Tech, 2013, 135: 683–689

    Article  CAS  Google Scholar 

  167. Liu Z, Zhang FS, Wu J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 2010, 89: 510–514

    Article  CAS  Google Scholar 

  168. Román S, Valente Nabais JM, Ledesma B, et al. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater, 2013, 165: 127–133

    Article  CAS  Google Scholar 

  169. Aydincak K, Yumak T, Sinag A, et al. Synthesis and characterization of carbonaceous materials from saccharides (glucose and lactose) and two waste biomasses by hydrothermal carbonization. Ind Eng Chem Res, 2012, 51: 9145–9152

    Article  CAS  Google Scholar 

  170. Sevilla M, Maciá-Agulló JA, Fuertes AB. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass BioEnergy, 2011, 35: 3152–3159

    Article  CAS  Google Scholar 

  171. White RJ, Yoshizawa N, Antonietti M, et al. A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem, 2011, 13: 2428

    Article  CAS  Google Scholar 

  172. Titirici MM, Thomas A, Antonietti M. Replication and coating of silica templates by hydrothermal carbonization. Adv Funct Mater, 2007, 17: 1010–1018

    Article  CAS  Google Scholar 

  173. Jain A, Jayaraman S, Balasubramanian R, et al. Hydrothermal pretreatment for mesoporous carbon synthesis: enhancement of chemical activation. J Mater Chem A, 2014, 2: 520–528

    Article  CAS  Google Scholar 

  174. Jain A, Balasubramanian R, Srinivasan MP. Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J, 2016, 283: 789–805

    Article  CAS  Google Scholar 

  175. Sun W, Lipka SM, Swartz C, et al. Hemp-derived activated carbons for supercapacitors. Carbon, 2016, 103: 181–192

    Article  CAS  Google Scholar 

  176. Titirici MM, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev, 2010, 39: 103–116

    Article  CAS  Google Scholar 

  177. Thambidurai A, Lourdusamy JK, John JV, et al. Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation. Korean J Chem Eng, 2014, 31: 268–275

    Article  CAS  Google Scholar 

  178. Sudhan N, Subramani K, Karnan M, et al. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuels, 2017, 31: 977–985

    Article  CAS  Google Scholar 

  179. Ma G, Hua F, Sun K, et al. Porous carbon derived from sorghum stalk for symmetric supercapacitors. RSC Adv, 2016, 6: 103508–103516

    Article  CAS  Google Scholar 

  180. Huang C, Sun T, Hulicova-Jurcakova D. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorusrich carbons. ChemSusChem, 2013, 6: 2330–2339

    Article  CAS  Google Scholar 

  181. Gharehkhani S, Seyed Shirazi SF, Pilban Jahromi S, et al. Spongy nitrogen-doped activated carbonaceous hybrid derived from biomass material/graphene oxide for supercapacitor electrodes. RSC Adv, 2015, 5: 40505–40513

    Article  CAS  Google Scholar 

  182. Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes. J Mater Chem A, 2017, 5: 3939–3947

    Article  CAS  Google Scholar 

  183. Jiang M, Zhang J, Xing L, et al. KOH-activated porous carbons derived from chestnut shell with superior capacitive performance. Chin J Chem, 2016, 34: 1093–1102

    Article  CAS  Google Scholar 

  184. Redondo E, Carretero-González J, Goikolea E, et al. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta, 2015, 160: 178–184

    Article  CAS  Google Scholar 

  185. Misnon II, Zain NKM, Aziz RA, et al. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim Acta, 2015, 174: 78–86

    Article  CAS  Google Scholar 

  186. Deng L, Zhong W, Wang J, et al. The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochim Acta, 2017, 228: 398–406

    Article  CAS  Google Scholar 

  187. Yadav P, Basu A, Suryawanshi A, et al. Highly stable laser-scribed flexible planar microsupercapacitor using mushroom derived carbon electrodes. Adv Mater Interfaces, 2016, 3: 1600057

    Article  CAS  Google Scholar 

  188. Wang K, Xu M, Gu Z, et al. Pyrrole modified biomass derived hierarchical porous carbon as high performance symmetrical supercapacitor electrodes. Int J Hydrogen Energy, 2016, 41: 13109–13115

    Article  CAS  Google Scholar 

  189. Zhan C, Yu X, Liang Q, et al. Flour food waste derived activated carbon for high-performance supercapacitors. RSC Adv, 2016, 6: 89391–89396

    Article  CAS  Google Scholar 

  190. Boyjoo Y, Cheng Y, Zhong H, et al. From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon, 2017, 116: 490–499

    Article  CAS  Google Scholar 

  191. Luan Y, Huang Y, Wang L, et al. Porous carbon@MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density. J Electroanal Chem, 2016, 763: 90–96

    Article  CAS  Google Scholar 

  192. Chen C, Zhang Y, Li Y, et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci, 2017, 10: 538–545

    Article  CAS  Google Scholar 

  193. Wu S, Zhu Y. Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater, 2016, 60: 25–38

    Article  CAS  Google Scholar 

  194. Mullaivananathan V, Sathish R, Kalaiselvi N. Coir pith derived bio-carbon: demonstration of potential anode behavior in lithium-ion batteries. Electrochim Acta, 2017, 225: 143–150

    Article  CAS  Google Scholar 

  195. Zhu C, Akiyama T. Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes. Green Chem, 2016, 18: 2106–2114

    Article  CAS  Google Scholar 

  196. Ru H, Xiang K, Zhou W, et al. Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochim Acta, 2016, 222: 551–560

    Article  CAS  Google Scholar 

  197. Ru H, Bai N, Xiang K, et al. Porous carbons derived from microalgae with enhanced electrochemical performance for lithiumion batteries. Electrochim Acta, 2016, 194: 10–16

    Article  CAS  Google Scholar 

  198. Liu T, Kavian R, Chen Z, et al. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage. Nanoscale, 2016, 8: 3671–3677

    Article  CAS  Google Scholar 

  199. Yu X, Zhang K, Tian N, et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Mater Lett, 2015, 142: 193–196

    Article  CAS  Google Scholar 

  200. Han SW, Jung DW, Jeong JH, et al. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J, 2014, 254: 597–604

    Article  CAS  Google Scholar 

  201. Wang SX, Yang L, Stubbs LP, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces, 2013, 5: 12275–12282

    Article  CAS  Google Scholar 

  202. Mondal AK, Kretschmer K, Zhao Y, et al. Naturally nitrogen doped porous carbon derived from waste shrimp shells for highperformance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater, 2017, 246: 72–80

    Article  CAS  Google Scholar 

  203. Ou J, Yang L, Xi X. Biomass inspired nitrogen doped porous carbon anode with high performance for lithium ion batteries. Chin J Chem, 2016, 34: 727–732

    Article  CAS  Google Scholar 

  204. Ou J, Zhang Y, Chen L, et al. Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J Mater Chem A, 2015, 3: 6534–6541

    Article  CAS  Google Scholar 

  205. Ou J, Zhang Y, Chen L, et al. Heteroatom doped porous carbon derived from hair as an anode with high performance for lithium ion batteries. RSC Adv, 2014, 4: 63784–63791

    Article  CAS  Google Scholar 

  206. Chen L, Zhang Y, Lin C, et al. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J Mater Chem A, 2014, 2: 9684–9690

    Article  CAS  Google Scholar 

  207. Wang L, Xue J, Gao B, et al. Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Adv, 2014, 4: 64744–64746

    Article  CAS  Google Scholar 

  208. Che Y, Zhu X, Li J, et al. Simple synthesis of MoO2/carbon aerogel anodes for high performance lithium ion batteries from seaweed biomass. RSC Adv, 2016, 6: 106230–106236

    Article  CAS  Google Scholar 

  209. Wu J, Zuo L, Song Y, et al. Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloys Compd, 2016, 656: 745–752

    Article  CAS  Google Scholar 

  210. Lu Y, Fong E. Biomass-mediated synthesis of carbon-supported nanostructured metal sulfides for ultra-high performance lithium-ion batteries. J Mater Chem A, 2016, 4: 2738–2745

    Article  CAS  Google Scholar 

  211. Chen J, Liu W, Liu S, et al. Marine microalgaes-derived porous ZnMn2O4/C microspheres and performance evaluation as Li-ion battery anode by using different binders. Chem Eng J, 2017, 308: 1200–1208

    Article  CAS  Google Scholar 

  212. Bongu CS, Karuppiah S, Nallathamby K. Validation of green composite containing nanocrystalline Mn2O3 and biocarbon derived from human hair as a potential anode for lithium-ion batteries. J Mater Chem A, 2015, 3: 23981–23989

    Article  CAS  Google Scholar 

  213. Cheng F, Li WC, Lu AH. Interconnected nanoflake network derived from a natural resource for high-performance lithium-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 27843–27849

    Article  CAS  Google Scholar 

  214. Xia Y, Zhang W, Xiao Z, et al. Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem, 2012, 22: 9209–9215

    Article  CAS  Google Scholar 

  215. Liu P, Li Y, Hu YS, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A, 2016, 4: 13046–13052

    Article  CAS  Google Scholar 

  216. Ou J, Yang L, Xi X. Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance. Electron Mater Lett, 2016, 13: 66–71

    Article  CAS  Google Scholar 

  217. Yang T, Niu X, Qian T, et al. Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life. Nanoscale, 2016, 8: 15497–15504

    Article  CAS  Google Scholar 

  218. Zhang F, Yao Y, Wan J, et al. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater Interfaces, 2017, 9: 391–397

    Article  CAS  Google Scholar 

  219. Zhang X, Li P, Zang R, et al. Antimony/porous biomass carbon nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem Asian J, 2017, 12: 116–121

    Article  CAS  Google Scholar 

  220. Dahbi M, Kiso M, Kubota K, et al. Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A, 2017, 5: 9917–9928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51702117, 51672055), Major Research Projects Fund of Jilin Institute of Chemical Technology (2016006), Natural Science Foundation of Heilongjiang Province of China (E201416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuangjun Fan  (范壮军).

Additional information

Lili Jiang received her PhD degree in 2016 at the College of Materials Science and Chemical Engineering at Harbin Engineering University. She is now an associate professor at Jilin Institute of Chemical Technology. Her current research is focused on the design and synthesis of functional carbonaceous nanomaterials as well as their applications for energy conversion and storage devices.

Lizhi Sheng currently is pursuing PhD degree in the College of Materials Science and Chemical Engineering at Harbin Engineering University. His research interests mainly focus on the design and synthesis of functional carbonaceous nanomaterials and their applications for energy storage.

Zhuangjun Fan received his PhD in 2003 at the Institute of Coal Chemistry, Chinese Academy of Sciences. He became full professor at the College of Materials Science and Chemical Engineering in 2006, and now he is the director of the Institue of Advanced Carbon Based Materials at Harbin Engineering University. His research interests focus on the design and controlled synthesis of carbon nanomaterials such as carbon nanotubes and graphene, and their applications in energy-related areas such as supercapacitors, Li ion batteries and full cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Sheng, L. & Fan, Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 61, 133–158 (2018). https://doi.org/10.1007/s40843-017-9169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9169-4

Keywords

Navigation