Skip to main content
Log in

Synthesis of Environmentally Friendly Oxide Zirconium from Zircon Sand

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Technologically Enhanced Natural Radioactive Material (TENORM) contamination is a serious health problem. In applying safe zirconium oxide (ZrO2) in the industrial sector, it is necessary to have environmentally friendly ZrO2, namely very low radioactivity (< 1 Bq/g) and TENORM free. This study aims to obtain a ZrO2 with very low radioactivity and TENORM-free. The synthesis of ZrO2 consists of optimizing the smelting of zircon sand, leaching sodium zirconate, precipitation of impurities including TENORM, precipitation of zirconium hydroxide, and calcination. The ZrO2 was characterized by XRD, FTIR, FE–SEM–EDS, and Alpha–Beta Radioactivity Counter. The characterization composition with XRF and NAA methods shows a ZrO2 purity of 97% and TENORM-free, with very low radioactivity (0.031 Bq/g), far below the maximum standard (1 Bq/g). This synthesis method can increase the concentration of ZrO2 from 41 to 97% and decrease TENORM (U3O8 from 470 ppm becomes undetectable, and ThO2 from 680 ppm becomes undetectable).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Samin TA, Rozana K, Djati FK (2022) Synthesis and characterization of TENORM-free nano zirconia from zircon sand. J Indian Chem Soc 99:100678. https://doi.org/10.1016/j.jics.2022.100678

    Article  CAS  Google Scholar 

  2. Subuki I, Mohsin MF, Ismail MH, Mohamed Fadzil FS (2020) Study of the synthesis of zirconia powder from zircon sand obtained from zircon minerals malaysia by caustic fusion method. Indones J Chem 20:782. https://doi.org/10.22146/ijc.43936

    Article  CAS  Google Scholar 

  3. Ali MMM, Zhao H, Li Z, Maglas NNM (2019) Concentrations of TENORMs in the petroleum industry and their environmental and health effects. RSC Adv 9:39201–39229. https://doi.org/10.1039/C9RA06086C

    Article  CAS  Google Scholar 

  4. Nabhani ALK, Khan F, Yang M (2016) Technologically enhanced naturally occurring radioactive materials in oil and gas production: a silent killer. Process Saf Environ Prot 99:237–247. https://doi.org/10.1016/j.psep.2015.09.014

    Article  CAS  Google Scholar 

  5. Lombardini ED, Pacheco-Thompson ME (2023) Radiation and other physical agents. In: Haschek and Rousseaux’s handbook of toxicologic pathology. Elsevier, London, pp 839–927

    Chapter  Google Scholar 

  6. Shinonaga T, Walther D, Li WB, Tschiersch J (2023) Internal radiation exposure from TENORM for workers conducting cleaning activities on equipment used at geothermal energy plant. Int J Hyg Environ Health 248:114061. https://doi.org/10.1016/j.ijheh.2022.114061

    Article  CAS  Google Scholar 

  7. Amliliana RA, Muzakky M (2021) Synthesis of low TENORM zirconium sulfate from ZrO(OH)2 with sulfuric acid. Indones J Chem 21:842. https://doi.org/10.22146/ijc.60298

    Article  CAS  Google Scholar 

  8. Ali MMM, Li Z, Zhao H et al (2021) Characterization of the health and environmental radiological effects of TENORM and radiation hazard indicators in petroleum waste–Yemen. Process Saf Environ Prot 146:451–463. https://doi.org/10.1016/j.psep.2020.11.016

    Article  CAS  Google Scholar 

  9. Tumkur PP, Gunasekaran NK, Lamani BR et al (2021) Cerium oxide nanoparticles: synthesis and characterization for biosafe applications. Nanomanufacturing 1:176–189. https://doi.org/10.3390/nanomanufacturing1030013

    Article  Google Scholar 

  10. Righi S, Andretta M, Bruzzi L (2005) Assessment of the radiological impacts of a zircon sand processing plant. J Environ Radioact 82:237–250. https://doi.org/10.1016/j.jenvrad.2005.01.010

    Article  CAS  Google Scholar 

  11. Liu J, Song J, Qi T et al (2016) Controlling the formation of Na2ZrSiO5 in alkali fusion process for zirconium oxychloride production. Adv Powder Technol 27:1–8. https://doi.org/10.1016/j.apt.2015.08.005

    Article  CAS  Google Scholar 

  12. Blanchart P (2018) Extraction, properties and applications of zirconia. In: Industrial chemistry of oxides for emerging applications. Wiley, Hoboken, pp 165–209

    Chapter  Google Scholar 

  13. Das K, Bandyopadhyay TK (2004) Synthesis and characterization of zirconium carbide-reinforced iron-based composite. Mater Sci Eng A 379:83–91. https://doi.org/10.1016/j.msea.2003.12.022

    Article  CAS  Google Scholar 

  14. Abdelkader AM, Daher A, El-Kashef E (2008) Novel decomposition method for zircon. J Alloys Compd 460:577–580. https://doi.org/10.1016/j.jallcom.2007.06.032

    Article  CAS  Google Scholar 

  15. Suciu C, Gagea L, Hoffmann AC, Mocean M (2006) Sol–gel production of zirconia nanoparticles with a new organic precursor. Chem Eng Sci 61:7831–7835. https://doi.org/10.1016/j.ces.2006.09.006

    Article  CAS  Google Scholar 

  16. Shi F, Li Y, Wang H, Zhang Q (2012) Fabrication of well-dispersive yttrium-stabilized cubic zirconia nanoparticles via vapor phase hydrolysis. Prog Nat Sci Mater Int 22:15–20. https://doi.org/10.1016/j.pnsc.2011.12.003

    Article  Google Scholar 

  17. Musyarofah LND, Nurlaila R et al (2019) Synthesis of high-purity zircon, zirconia, and silica nanopowders from local zircon sand. Ceram Int 45:6639–6647. https://doi.org/10.1016/j.ceramint.2018.12.152

    Article  CAS  Google Scholar 

  18. Chintaparty R, Palagiri B, Nagireddy RR, Reddy V, Subbha RL (2015) Effect of phase transformation on optical and dielectric properties of zirconium oxide nanoparticles. Phase Trans 88:929–938. https://doi.org/10.1080/01411594.2015.1039012

    Article  CAS  Google Scholar 

  19. Atkinson I, Mocioiu OC, Anghel EM (2022) A study of zircon crystallization, structure, and chemical resistance relationships in ZrO2 containing ceramic glazes. Boletín la Soc Española Cerámica y Vidr 61:677–685. https://doi.org/10.1016/j.bsecv.2021.07.002

    Article  CAS  Google Scholar 

  20. Hidalgo J, Abajo C, Jiménez-Morales A, Torralba JM (2013) Effect of a binder system on the low-pressure powder injection moulding of water-soluble zircon feedstocks. J Eur Ceram Soc 33:3185–3194. https://doi.org/10.1016/j.jeurceramsoc.2013.06.027

    Article  CAS  Google Scholar 

  21. Wang JA, Valenzuela MA, Salmones J et al (2001) Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods. Catal Today 68:21–30. https://doi.org/10.1016/S0920-5861(01)00319-4

    Article  CAS  Google Scholar 

  22. Ebrahimi M, Ghaderi Hamidi A, Pourabdoli M (2022) Utilization of Na2CO3 for intermediate phase formation in vanadium-zircon pigment synthesis. Mater Chem Phys 281:125875. https://doi.org/10.1016/j.matchemphys.2022.125875

    Article  CAS  Google Scholar 

  23. Gharibshahi L, Saion E, Gharibshahi E et al (2017) Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials (Basel) 10:402. https://doi.org/10.3390/ma10040402

    Article  CAS  Google Scholar 

  24. Biswas RK, Habib MA, Karmakar AK, Islam MR (2010) A novel method for processing of Bangladeshi zircon: part i: baking, and fusion with NaOH. Hydrometallurgy 103:124–129. https://doi.org/10.1016/j.hydromet.2010.03.009

    Article  CAS  Google Scholar 

  25. Biswas RK, Habib MA, Islam MR (2010) A novel method for processing of Bangladeshi zircon. Hydrometallurgy 103:130–135. https://doi.org/10.1016/j.hydromet.2010.03.008

    Article  CAS  Google Scholar 

  26. Subuki I (2022) Influence on ratio of NaOH/ZrSiO4 in alkali fusion for amang zircon sand. ASM Sci J 17:1–10. https://doi.org/10.32802/asmscj.2022.1093

    Article  Google Scholar 

  27. Veerasamy N, Murugan R, Kasar S et al (2021) Geochemical characterization of monazite sands based on rare earth elements, thorium and uranium from a natural high background radiation area in Tamil Nadu. India J Environ Radioact 232:106565. https://doi.org/10.1016/j.jenvrad.2021.106565

    Article  CAS  Google Scholar 

  28. Trisnawati I, Prameswara G, Mulyono P et al (2020) Sulfuric acid leaching of heavy rare earth elements (HREEs) from Indonesian zircon tailing. Int J Technol 11:804. https://doi.org/10.14716/ijtech.v11i4.4037

    Article  Google Scholar 

  29. Xu S, Wu Q, Li X et al (2019) Radionuclide transfer in the zirconium oxychloride production process and the radiation effect in a typical chinese enterprise. Sustainability 11:5906. https://doi.org/10.3390/su11215906

    Article  CAS  Google Scholar 

  30. Yau T-L, Annamalai VE (2016) Corrosion of zirconium and its alloys. Reference module in materials science and materials engineering. Elsevier, Amsterdam

    Google Scholar 

  31. Daou EE (2014) The zirconia ceramic: strengths and weaknesses. Open Dent J 8:33–42. https://doi.org/10.2174/1874210601408010033

    Article  CAS  Google Scholar 

  32. Poernomo H, Sajima PND (2020) Synthesis of zirconium oxychloride and zirconia low TENORM by zircon sand from Landak West Kalimantan. J Phys Conf Ser 1436:12106. https://doi.org/10.1088/1742-6596/1436/1/012106

    Article  CAS  Google Scholar 

  33. Ali AH (2022) Production of highly purified zirconium oxide from zircon mineral leach liquor using bis-(2-ethylhexyl) phosphate as a promising extractant. Chem Pap 76:6723–6734. https://doi.org/10.1007/s11696-022-02339-1

    Article  CAS  Google Scholar 

  34. Abdel-Rehim AM (2005) A new technique for extracting zirconium form Egyptian zircon concentrate. Int J Miner Process 76:234–243. https://doi.org/10.1016/j.minpro.2005.02.004

    Article  CAS  Google Scholar 

  35. Apriany K, Permadani I, Syarif DG et al (2016) Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells. IOP Conf Ser Mater Sci Eng 107:12023. https://doi.org/10.1088/1757-899X/107/1/012023

    Article  Google Scholar 

  36. Datsko YN (2016) On features of deoxidization of CsI melt with zirconium getter. Funct Mater 23:307–312. https://doi.org/10.15407/fm23.02.307

    Article  CAS  Google Scholar 

  37. El Agamy HH, Mubark AE, Gamil EA et al (2023) Preparation of zirconium oxide nanoparticles from rosette concentrate using two distinct and sequential techniques: hydrothermal and fusion digestion. Chem Pap 77:3229–3240. https://doi.org/10.1007/s11696-023-02699-2

    Article  CAS  Google Scholar 

  38. Ma Y, Stopic S, Wang X et al (2020) Basic sulfate precipitation of zirconium from sulfuric acid leach solution. Metals (Basel) 10:1099. https://doi.org/10.3390/met10081099

    Article  CAS  Google Scholar 

  39. Thomas R, Devaux P, Rivenet M et al (2020) Zirconium oxalates: Zr(OH)2·(C2O4), (H11O5)2 [Zr2 (C2O4)5·(H2O)4], and MM′[Zr(C2O4)3] × H2O with M and M′ = ammonium, alkali metal, and hydroxonium ion H2 n + 1 On + (n = 2, 3, 4). ACS Omega 5:21260–21270. https://doi.org/10.1021/acsomega.0c03224

    Article  CAS  Google Scholar 

  40. Samin RK, Sunanti ST, Djati FK (2022) The synthesis study of zirconia with precipitation and sol–gel methods. AIP Conf Proc 2391:50012

    Article  CAS  Google Scholar 

  41. Wu Q, Chen J, Ren Y et al (2022) Species identification of phosphate at the ZrO2/water interface: a combined ATR-FTIR and DFT study. Appl Surf Sci 606:154946. https://doi.org/10.1016/j.apsusc.2022.154946

    Article  CAS  Google Scholar 

  42. Vinila VS, Isac J (2022) Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10.5+δ nanosystems. Design, fabrication, and characterization of multifunctional nanomaterials. Elsevier, Amstedam, pp 319–341

    Chapter  Google Scholar 

  43. Ali AH, Abdo SM, Dakroury GARS (2023) Zirconium preconcentration from zircon raffinate using gamma radiation–induced polymerization of reduced graphene oxide composite. Environ Sci Pollut Res 30:58330–58345. https://doi.org/10.1007/s11356-023-26485-5

    Article  CAS  Google Scholar 

  44. Andriayani M, Suharman DA (2023) Synthesis of mesoporous silica with ricinoleic methyl ester (Ricinus communis) as a template for adsorption copper (II) with optimizing Box–Behnken design. Case Stud Chem Environ Eng 7:100287. https://doi.org/10.1016/j.cscee.2022.100287

    Article  CAS  Google Scholar 

  45. Al-Hazmi MH, Choi Y, Apblett AW (2014) Preparation of zirconium oxide powder using zirconium carboxylate precursors. Adv Phys Chem 2014:1–8. https://doi.org/10.1155/2014/429751

    Article  Google Scholar 

  46. Eakin M, Brownlee SJ, Baskaran M, Barbero L (2016) Mechanisms of radon loss from zircon: microstructural controls on emanation and diffusion. Geochim Cosmochim Acta 184:212–226. https://doi.org/10.1016/j.gca.2016.04.024

    Article  CAS  Google Scholar 

  47. Chinchamalatpure VR, Chore SM, Patil SS, Chaudhari GN (2012) Synthesis and electrical characterization of ZrO2 thin films on Si(100). J Mod Phys 3:69–73. https://doi.org/10.4236/jmp.2012.31010

    Article  CAS  Google Scholar 

  48. Shpak AP, Grechanovsky AE, Lytovchenko AS et al (2005) Influence of temperature and uranium on the radiation stability of zircon. J Nucl Mater 347:73–76. https://doi.org/10.1016/j.jnucmat.2005.07.007

    Article  CAS  Google Scholar 

  49. Mohammed AA, Nadaand KB, Falih AH, Jassem AA (2023) Determination of radon radiation concentration in groundwater for some wells of Baghdad City. IOP Conf Ser Earth Environ Sci 1222:12036. https://doi.org/10.1088/1755-1315/1222/1/012036

    Article  Google Scholar 

  50. Nunes LJR, Curado A, Lopes SI (2023) The relationship between radon and geology: sources, transport and indoor accumulation. Appl Sci 13:7460. https://doi.org/10.3390/app13137460

    Article  CAS  Google Scholar 

  51. Tommasino L (2005) Radiochemical methods|radon. Encyclopedia of analytical science. Elsevier, Amsterdam, pp 32–44

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Ir. Gede Sutresna Wijaya, M.Eng, who has approved the 2020 DIPA of the Accelerator Science and Technology Center to finance this research. The author also thanks Devi Swasti Prabasiwi, ST, and Dewi Puspa Aryani, AMd. who have helped a lot with this research to completion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samin or Kharistya Rozana.

Ethics declarations

Conflict of interest

The authors declare no financial or personal conflicts of interest related to the publication of this paper.

Additional information

The contributing editor for this article was Atsushi Shibayama..

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samin, Astuti, W., Poernomo, H. et al. Synthesis of Environmentally Friendly Oxide Zirconium from Zircon Sand. J. Sustain. Metall. (2024). https://doi.org/10.1007/s40831-024-00845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40831-024-00845-y

Keywords

Navigation