Skip to main content

Advertisement

Log in

Review on Comprehensive Recovery Valuable Metals and Utilization of Copper Slag

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Copper slag, a waste solid produced in the copper smelting process, is a high-quality secondary resource with huge output. The recycling and utilization of copper slag is of great interest because it avoids the loss of valuable metals and the threat of harmful metals, and saves a lot of natural resources and energy. This paper firstly reviews the main methods for the recovery of valuable metals from copper slag, such as beneficiation method, pyrometallurgical approach, and hydrometallurgical process. Then, based on the physical and chemical properties of copper slag, the applications of copper slag in the field of building materials like concrete, cement, inorganic polymers, etc., and functional materials such as catalyst, glass–ceramic, slag wool, thermal energy storage material, etc., were summarized. Finally, the scientific treatment method of copper slag in future is prospected that green, economic, and environmentally friendly sustainable disposal process is the main theme.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zuo ZL, Feng Y, Dong XJ (2022) Advances in recovery of valuable metals and waste heat from copper slag. Fuel Process Technol 235:107361

    Article  CAS  Google Scholar 

  2. Prince S, Avimanyu D, Gary W et al (2017) Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Manage 70:272–281

    Article  Google Scholar 

  3. Zhang HP, Li B, Wei YG et al (2022) Effect of MgO on physicochemical property and phase transformation in copper slag. J Market Res 18:4604–4616

    CAS  Google Scholar 

  4. Rahaman S, Rahaman M, Mise N et al (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289:117940

    Article  CAS  Google Scholar 

  5. Fatoki JO, Badmus JA (2022) Arsenic as an environmental and human health antagonist: a review of its toxicity and disease initiation. J Hazard Mater Adv 5:100052

    Article  CAS  Google Scholar 

  6. Grzegorz I, Mikula K, Skrzypczak D et al (2021) Potential environmental pollution from copper metallurgy and methods of management. Environ Res 197(1):11105

    Google Scholar 

  7. Wang QK, Ma HW, Liu MT et al (2022) A new method of full resource utilization of copper slag. Hydrometallurgy 212:105899

    Article  CAS  Google Scholar 

  8. Phiri TC, Singh P, Nikoloski AN (2021) The potential for copper slag waste as a resource for a circular economy: a review—Part II. Miner Eng 172(2–3):107150

    Article  CAS  Google Scholar 

  9. Wang DW, Liang YJ, Lin Z et al (2022) Comprehensive recovery of zinc, iron and copper from copper slag by co-roasting with SO2-O2. J Market Res 19:2546–2555

    CAS  Google Scholar 

  10. Chen YW (2001) Cleaning of copper smelting slag in Chile. World Nonferrous Metal 9:56–62

    Google Scholar 

  11. Georgakopoulou M, Bassiakos Y, Philaniotou O et al (2011) A study of copper slag heaps and copper sources in the context of early bronze age aegean metal production. Archaeometry 1(53):123–145

    Article  Google Scholar 

  12. Zhang HX (2013) Discussion on slow cooling process of copper smelting slag. China Nonferrous Metal 42(3):32–33

    Google Scholar 

  13. Wang GH (2014) Copper smelting slag slow cooling technology research and practice. Copper Eng 4:27–30

    Google Scholar 

  14. Lv XL, Zhong SP, Yin WZ et al (2017) Effect of time of slag gradual cooling oil flotation performance in a certain copper smelter. Nonferrous Metals Eng Res 38(6):1–7

    Google Scholar 

  15. Dhir RK, de Brito J, Mangabhai R et al (2017) Sustainable construction materials: copper slag. woodhead publishing series in civil and structural engineering. Amsterdam, Elsevier

    Google Scholar 

  16. Yaswanth KK, Revathy J, Gajalakshmi P (2022) Influence of copper slag on Mechanical, durability and microstructural properties of GGBS and RHA blended strain hardening geopolymer composites. Constr Build Mater 342:128042

    Article  CAS  Google Scholar 

  17. Jaykumar S, Timir C, Rahul S et al (2022) Assessing the applicability of fine copper slag in road and structural fill application. Mater Today: Proc 62(13):7040–7043

    Google Scholar 

  18. Castillo E, Eggert R (2020) Reconciling diverging views on mineral depletion: a modified cumulative availability curve applied to copper resources. Resour Conserv Recycl 161:104896

    Article  Google Scholar 

  19. Tian HY, Guo ZQ, Pan J et al (2021) Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour Conserv Recycl 168:105366

    Article  CAS  Google Scholar 

  20. Wang LS, Gao ZT, Tang HH et al (2022) Copper recovery from copper slags through flotation enhanced by sodium carbonate synergistic mechanical activation. J Environ Chem Eng 10(3):2213–3437

    Google Scholar 

  21. Sarrafi A, Rahmati B, Hassani HR et al (2004) Recovery of copper from reverberatory furnace slag by flotation. Miner Eng 17(3):457–459

    Article  CAS  Google Scholar 

  22. Wang LS, Gao ZY, Yang Y et al (2021) Research progress on comprehensive recovery and utilization of copper slag. Chem Ind Eng Progress 40(10):5237–5250

    CAS  Google Scholar 

  23. Guo ZQ, Zhu DQ, Pan J et al (2016) Improving beneficiation of copper and iron from copper slag by modifying the molten copper slag. Metals 6(4):86

    Article  Google Scholar 

  24. Lee KS, Jo SK, Shin D et al (2014) Upgrading of iron from waste copper slag by a physico-chemical separation process. J Korean Inst Resour Recycl 23(3):30–36

    Google Scholar 

  25. Huang JT, Lyu S, Han H et al (2022) Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags. Energy 252:123962

    Article  CAS  Google Scholar 

  26. Rozendaal A, Horn R (2013) Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa. Miner Eng 52:184–190

    Article  CAS  Google Scholar 

  27. Guo ZQ, Zhu DQ, Pan J et al (2017) Effect of Na2CO3 addition on carbothermic reduction of copper smelting slag to prepare crude Fe-Cu alloy. JOM 69(9):1688–1695

    Article  CAS  Google Scholar 

  28. Shamsi M, Noparast M, Shafaie SZ (2015) Effect of grinding time on flotation recovery of copper smelting slags in Bardaskan district. J Min Environ 6(2):2251–8592

    Google Scholar 

  29. Roy S, Rehani S (2015) Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures. Int J Miner Process 143:43–49

    Article  CAS  Google Scholar 

  30. Sibanda V, Sipunga E, Danha G et al (2020) Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal. Heliyon 6(1):e03135

    Article  CAS  Google Scholar 

  31. Fan JQ, Li HX, Wei LT et al (2017) The recovery of copper from smelting slag by flotation process. In: Wang S, Free M, Alam S, Zhang M, Taylor P (eds) Applications of process engineering principles in materials processing, energy and environmental technologies. The minerals, metals & materials series. Springer, Cham, pp 231–237

    Chapter  Google Scholar 

  32. Bruckard WJ, Somerville M, Hao F (2004) The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pilot plant smelting trials. Miner Eng 17(4):495–504

    Article  CAS  Google Scholar 

  33. Lai XS, Huang HJ (2017) Current status of the comprehensive utilization technology of copper slag. Metal Mine 11:205–208

    Google Scholar 

  34. Deng T, Ling YH (2004) Processing of copper converter slag for metals reclamation: Part II: mineralogical study. Waste Manag Res: J Int Solid Wastes Public Clean Assoc ISWA 22(5):376–382

    Article  CAS  Google Scholar 

  35. Meshram P, Bhagat L, Prakash U et al (2017) Organic acid leaching of base metals from copper granulated slag and evaluation of mechanism. Can Metall Q 56(2):168–178

    Article  CAS  Google Scholar 

  36. Dimitrijevic MD, Urosevic DM, Jankovic ZD et al (2016) Recovery of copper from smelting slag by sulphation roasting and water leaching. Physicochem Probl Miner Process 52(1):409–421

    CAS  Google Scholar 

  37. Feng QC, Zhao WJ, Wen SM (2018) Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Appl Surf Sci 436(1):823–831

    Article  CAS  Google Scholar 

  38. Li SW, Guo ZQ, Pan J et al (2021) Stepwise utilization process to recover valuable components from copper slag. Minerals 11(2):211

    Article  CAS  Google Scholar 

  39. Shi Y, Zhu DQ, Pan J et al (2022) Investigation into the coal-based direct reduction behaviors of various vanadium titanomagnetite pellets. J Mater Res Technol 19:243–262

    Article  CAS  Google Scholar 

  40. Pye S, Welsby D, McDowall W et al (2022) Regional uptake of direct reduction iron production using hydrogen under climate policy. Energy Clim Change 3:100087

    Article  CAS  Google Scholar 

  41. Yao GZ, Guo Q, Li YL et al (2022) An innovation technology for recovering silver and valuable metals from hazardous zinc leaching residue through direct reduction. Miner Eng 188:107857

    Article  CAS  Google Scholar 

  42. Sarfo P, Wyss G, Ma GJ et al (2017) Carbothermal reduction of copper smelter slag for recycling into pig iron and glass. Miner Eng 107:8–19

    Article  CAS  Google Scholar 

  43. Li SW, Pan J, Zhu DQ et al (2019) A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na2CO3 and CaO. Powder Technol 347:159–169

    Article  CAS  Google Scholar 

  44. Zhu DQ, Xu JW, Guo ZQ et al (2020) Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod 250:119462

    Article  CAS  Google Scholar 

  45. Wang HY, Song SX (2020) Separation of silicon and iron in copper slag by carbothermic reduction-alkaline leaching process. J Cent South Univ 27(8):2249–2258

    Article  CAS  Google Scholar 

  46. Zheng YX, Lv JF, Lai ZN et al (2019) Innovative methodology for separating copper and iron from Fe–Cu alloy residues by selective oxidation smelting. J Clean Prod 231:110–120

    Article  CAS  Google Scholar 

  47. Cao HY, Wang JM, Zhang L et al (2012) Study on green enrichment and separation of copper and iron components from copper converter slag. Procedia Environ Sci 16:740–748

    Article  CAS  Google Scholar 

  48. Fan Y, Shibata E, Iizuka A et al (2015) Crystallization behavior of copper smelter slag during molten oxidation. Metall Mater Trans B 46(5):2158–2164

    Article  CAS  Google Scholar 

  49. Yao CL, Liu ZN, Teng Y et al (2019) Comprehensive utilization development and prospect of copper slag. Min Metall 28(2):77–81

    CAS  Google Scholar 

  50. Fan Y, Shibata E, Iizuka A et al (2014) Crystallization behaviors of copper smelter slag studied using time-temperature-transformation diagram. Mater Trans 55(6):958–963

    Article  CAS  Google Scholar 

  51. Li QJ, Yang FX, Wang ZY et al (2019) Study on mechanism of oxidation modification of copper slag. Trans Indian Inst Met 72(12):3223–3231

    Article  CAS  Google Scholar 

  52. Shi Y, Li B, Dai GP et al (2019) Effect of calcium borate on sedimentation of copper inclusions in copper slag. Guocheng Gongcheng Xuebao/ Chin J Process Eng 19(3):553–559

    CAS  Google Scholar 

  53. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44(1):1–39

    Article  CAS  Google Scholar 

  54. Li Y, Yang SH, Tang CB et al (2018) Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery. J Mini Metal Sec B 54(1):73–79

    Article  Google Scholar 

  55. Xiao WB, Yao SW, Zhou SW et al (2022) Evolution of the structure and viscosity of copper slag during metallization-reduction. J Alloy Compd 903:163751

    Article  CAS  Google Scholar 

  56. Guo ZQ, Zhu DQ, Pan J et al (2018) Industrial tests to modify molten copper slag for improvement of copper recovery. JOM 70(4):533–538

    Article  CAS  Google Scholar 

  57. Zhou WT, Liu X, Lyu XJ (2022) Extraction and separation of copper and iron from copper smelting slag: a review. J Clean Prod 368:133095

    Article  CAS  Google Scholar 

  58. Debora MDO, Luis GSS, Gregory JO et al (2014) Acid leaching of a copper ore by sulphur-oxidizing microorganisms. Hydrometallurgy 147:223–227

    Google Scholar 

  59. Zhang Y, Man RL, Ni WD et al (2010) Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103(1):25–29

    CAS  Google Scholar 

  60. Rashid KN, Leila IS, Aisulu KZ et al (2013) Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int J Miner Process 124:145–149

    Article  Google Scholar 

  61. Zeng T, Deng ZG, Zhang F et al (2021) Removal of arsenic from “Dirty acid” wastewater via Waelz slag and the recovery of valuable metals. Hydrometallurgy 200:105562

    Article  CAS  Google Scholar 

  62. Huang ZL, Liu YY, Qin QW et al (2012) Study on copper extraction and iron removal from reverberatory water-quenched copper slag. Min Metal Eng 32(5):82–81

    CAS  Google Scholar 

  63. Banza AN, Gock E, Kongolo K (2002) Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy 67(1–3):63–69

    Article  CAS  Google Scholar 

  64. Deng T, Ling YH (2007) Processing of copper converter slag for metal reclamation. Part I: extraction and recovery of copper and cobalt. Waste Manag Res 25(5):440–448

    Article  CAS  Google Scholar 

  65. Ahmed IM, Nayl AA, Daoud JA (2016) Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J Saudi Chem Soc 20:S280–S285

    Article  CAS  Google Scholar 

  66. Zhang L, Fang JJ, Tang M et al (2019) Research progress of wet process of copper smelter slag. Conserv Util Miner Resour 39(3):81–87

    CAS  Google Scholar 

  67. Shi GC, Liao YL, Su BW et al (2020) Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Sep Purif Technol 241:116699

    Article  CAS  Google Scholar 

  68. Perederiy I, Papangelakis VG, Buarzaiga M et al (2011) Co-treatment of converter slag and pyrrhotite tailings via high pressure oxidative leaching. J Hazard Mater 194:399–406

    Article  CAS  Google Scholar 

  69. Zhang CD, Hu B, Wang HG et al (2020) Recovery of valuable metals from copper slag. Min Metal Explor 37:1241–1251

    Google Scholar 

  70. Araceva A, Fernández F, Jerez O et al (2019) Converter slag leaching in ammonia medium/column system with subsequent crystallisation with NaSH. Hydrometallurgy 188:31–37

    Article  Google Scholar 

  71. Figueroa-Estrada JC, Aguilar-López R, Rodríguez-Vázquez R et al (2001) Bioleaching for the extraction of metals from sulfide ores using a new chemolithoautotrophic bacterium. Biotechnol Adv 19(2):119–132

    Google Scholar 

  72. Erüst C, Akcil A, Gahan CS et al (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88(12):2115–2132

    Article  Google Scholar 

  73. Kaksonen AH, Särkijärvi S, Peuraniemi E et al (2017) Metal biorecovery in acid solutions from a copper smelter slag. Hydrometallurgy 168:135–140

    Article  CAS  Google Scholar 

  74. Brar KK, Magdouli S, Etteieb S et al (2021) Integrated bioleaching-electrometallurgy for copper recovery—A critical review. J Clean Prod 291:125257

    Article  CAS  Google Scholar 

  75. Miganei L, Gock E, Achimovicova M et al (2017) New residue-free processing of copper slag from smelter. J Clean Prod 164:534–542

    Article  CAS  Google Scholar 

  76. Ma LY, Wang XJ, Tao JM et al (2017) Bioleaching of the mixed oxide-sulfide copper ore by artificial indigenous and exogenous microbial community. Hydrometallurgy 169:41–46

    Article  CAS  Google Scholar 

  77. Jarno M, Marja S, Mohammad K et al (2020) Bioleaching of cobalt from sulfide mining tailings; a mini-pilot study. Hydrometallurgy 196:105418

    Article  Google Scholar 

  78. Kaksonen AH, Lavonen L, Kuusenaho M et al (2011) Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Miner Eng 24(11):1113–1121

    Article  CAS  Google Scholar 

  79. Behera SK, Panda SK, Mulaba-Bafubiandi A (2022) Valorization of copper smelter slag through the recovery of metal values by a synergistic bioprocess system of bio-flotation and bio-leaching. Environ Qual Manage 1:1088–1913

    Google Scholar 

  80. Karwowska E, Andrzejewska MD, Lebkowska M et al (2014) Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J Hazard Mater 264:203–210

    Article  CAS  Google Scholar 

  81. Xu ZW, Zhang JG, Shan MJ et al (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458(10):1–13

    CAS  Google Scholar 

  82. Cárdenas JP, Quatrini R, Holmes DS (2016) Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Res Microbiol 167(7):529–538

    Article  Google Scholar 

  83. Cecconet D, Zou SQ, Andrea GC et al (2018) Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems. Sci Total Environ 636(1):881–890

    Article  CAS  Google Scholar 

  84. Potysz A, Lens PNL, Van DVJ et al (2016) Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Appl Geochem: J Int Assoc Geochem Cosmochem 68:39–52

    Article  CAS  Google Scholar 

  85. Behera SK, Panda SK, Mulaba-Bafubiandi AF et al (2022) Valorization of copper smelter slag through the recovery of metal values by a synergistic bioprocess system of bio-flotation and bio-leaching. Environ Qual Manage. https://doi.org/10.1002/tqem.21885

    Article  Google Scholar 

  86. You NQ, Liu YC, Gu DW et al (2020) Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate. Constr Build Mater 242:118029

    Article  CAS  Google Scholar 

  87. Gupta N, Siddique R (2020) Durability characteristics of self-compacting concrete made with copper slag. Constr Build Mater 247:118580

    Article  CAS  Google Scholar 

  88. Esfahani S, Zareei SA, Madhkhan M et al (2020) Mechanical and gamma-ray shielding properties and environmental benefits of concrete incorporating GGBFS and copper slag. J Build Eng 33:101615

    Article  Google Scholar 

  89. Sharma R, Khan RA (2017) Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. J Clean Prod 151:179–192

    Article  CAS  Google Scholar 

  90. Wang RJ, Shi Q, Li Y et al (2021) A critical review on the use of copper slag (CS) as a substitute constituent in concrete. Constr Build Mater 292(7):123371

    Article  CAS  Google Scholar 

  91. Zheng WK, He DY, Wang YC et al (2021) Preparation of cement-based color facing mortar by copper pyrometallurgical slag modification: efficient utilization of high-iron-content slag. J Environ Chem Eng 9(5):105888

    Article  CAS  Google Scholar 

  92. Kaur P, Singh D, Singh T (2016) Heavy metal oxide glasses as gamma rays shielding material. Nucl Eng Des 307(1):364–376

    Article  CAS  Google Scholar 

  93. Sim S, Jeon D, Kim DH (2021) Incorporation of copper slag in cement brick production as a radiation shielding material. Appl Radiat Isot: Incl Data Instrum Methods Use Agric Ind Med 176:109851

    Article  CAS  Google Scholar 

  94. Shi CJ, Meyer C, Behnood A (2008) Utilization of copper slag in cement and concrete. Resour Conserv Recycl 52(10):1115–1120

    Article  Google Scholar 

  95. Gopalakrishnana R, Nithiyananthamb S (2020) Microstructural, mechanical, and electrical properties of copper slag admixtured cement mortar. J Build Eng 31:101375

    Article  Google Scholar 

  96. Zhang QL, Zhang BY, Feng Y et al (2022) Hydration development of blended cement paste with granulated copper slag modified with CaO and Al2O3. J Market Res 18:909–920

    CAS  Google Scholar 

  97. Sanderson P, Naidu R, Bolan N (2015) Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: synchrotron investigation. J Hazard Mater 299:395–403

    Article  CAS  Google Scholar 

  98. Luo YL, Zhou XT, Luo ZQ et al (2022) A novel iron phosphate cement derived from copper smelting slag and its early age hydration mechanism. Cement Concr Compos 133:104653

    Article  CAS  Google Scholar 

  99. Lu X, Chen B (2016) Experimental study of magnesium phosphate cements modified by metakaolin. Constr Build Mater 123:719–726

    Article  CAS  Google Scholar 

  100. Zhang ZQ, Wang Q, Huang ZX (2022) Value-added utilization of copper slag to enhance the performance of magnesium potassium phosphate cement. Resour Conserv Recycl 180:106212

    Article  CAS  Google Scholar 

  101. Romy SE, Elke G, Nele DB (2022) Valorization of secondary copper slag as aggregate and cement replacement in ultra-high-performance concrete. J Build Eng 54:104567

    Article  Google Scholar 

  102. Jannie SJ, John LP, Peter D et al (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz 1(1):145–155

    Article  Google Scholar 

  103. Van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29(1):89–104

    Article  Google Scholar 

  104. Modha HMC, Sharma N, Singh S (2021) Alkali activated material brick. Lect Notes Civ Eng 143:131–139

    Article  Google Scholar 

  105. Coffetti D, Crotti E, Gazzaniga G et al (2022) Pathways towards sustainable concrete. Cem Concr Res 154:106718

    Article  CAS  Google Scholar 

  106. Duxson P, Fernández-Jiménez A, Provis JL (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933

    Article  CAS  Google Scholar 

  107. Peys A, White C, Rahier H (2019) Alkali-activation of CaO-FeOx-SiO2 slag: Formation mechanism from in-situ X-ray total scattering. Cem Concr Res 122:179–188

    Article  CAS  Google Scholar 

  108. Peys A, Douvalis AP, Hallet V et al (2019) Inorganic polymers from CaO-FeOx-SiO2 slag: the start of oxidation of Fe and the formation of a mixed valence binder. Front Mater 6:00212

    Article  Google Scholar 

  109. Amin N, Jordi P, Maria VB et al (2016) Use of ancient copper slags in Portland cement and alkali activated cement matrices. J Environ Manage 167:115–123

    Article  Google Scholar 

  110. Hos JP, Mccormick PG, Byrne LT (2002) Investigation of a synthetic aluminosilicate inorganic polymer. J Mater Sci 37(11):2311–2316

    Article  CAS  Google Scholar 

  111. Garcia LI, Aparicio RE, Fernández JA et al (2016) Effect of calcium on the alkaline activation of aluminosilicate glass. Ceram Int 42(6):7697–7707

    Article  Google Scholar 

  112. Sande JVD, Peys A, Hertel T et al (2020) Upcycling of non-ferrous metallurgy slags: identifying the most reactive slag for inorganic polymer construction materials. Resour Conserv Recycl 154:104627

    Article  Google Scholar 

  113. Wang KT, Du LQ, Lu XS et al (2017) Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technol 312:204–209

    Article  CAS  Google Scholar 

  114. Giels M, Lacobescu RI, Cappuyns V et al (2019) Understanding the leaching behavior of inorganic polymers made of iron rich slags. J Clean Prod 238:117736

    Article  CAS  Google Scholar 

  115. Mast B, Fransis S, Vandoren B (2021) Micromechanical and microstructural analysis of Fe-rich plasma slag-based inorganic polymers. Cement Concr Compos 118:103968

    Article  CAS  Google Scholar 

  116. Liu Y, Yan CJ, Zhang ZH et al (2016) A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel 185:181–189

    Article  CAS  Google Scholar 

  117. Charola A, Pühringer J, Steiger M et al (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52(2):339–352

    Article  CAS  Google Scholar 

  118. Masahide HCA, Kazufumi H (2021) Preparation and evaluation of gypsum plaster composited with copper smelter slag. Clean Eng Technol 2:100084

    Article  Google Scholar 

  119. Pedreo RMA, Rodríguez LC, Flores-colen I et al (2020) Use of polycarbonate waste as aggregate in recycled gypsum plasters. Materials 13(14):3042

    Article  Google Scholar 

  120. Ramos A, Quesada DM, Novoa RB et al (2018) The use of copper slags as an aggregate replacement in asphalt mixes with RAP: physical–chemical and mechanical behavioural analysis. Constr Build Mater 190:427–438

    Article  Google Scholar 

  121. Raposeiras AC, Vargas CA, Movilla QD et al (2016) Effect of copper slag addition on mechanical behavior of asphalt mixes containing reclaimed asphalt pavement. Constr Build Mater 119:268–276

    Article  CAS  Google Scholar 

  122. Ziari H, Moniri A, Imaninasab R et al (2019) Effect of copper slag on performance of warm mix asphalt. Int J Pavement Eng 20(7–8):775–781

    Article  CAS  Google Scholar 

  123. Jayvant C, Brind K, Ankit G (2018) Application of waste materials as fillers in bituminous mixes. Waste Manage 78:417–425

    Article  Google Scholar 

  124. Modarres A, Bengar PA (2019) Investigating the indirect tensile stiffness, toughness and fatigue life of hot mix asphalt containing copper slag powder. Int J Pavement Eng 20(7–8):977–985

    Article  CAS  Google Scholar 

  125. Muoz CO, Raposeiras AC, Movilla QD et al (2021) Mechanical performance of sustainable asphalt mixtures manufactured with copper slag and high percentages of reclaimed asphalt pavement. Constr Build Mater 304(8):124653

    Google Scholar 

  126. Pundhir N, Kamaraj C, Nanda PK (2005) Use of copper slag as construction material in bituminous pavements. J Sci Ind Res 64(12):997–1002

    CAS  Google Scholar 

  127. Abdelfattah Khalid AS, Khalid AJ (2018) Evaluation of rutting potential for asphalt concrete mixes containing copper slag. Int J Pavement Eng 19(7):630–640

    Article  Google Scholar 

  128. Aitor CR, Diana MQ, Osvaldo MC et al (2021) Production of asphalt mixes with copper industry wastes: use of copper slag as raw material replacement. J Environ Manage 293:112867

    Article  Google Scholar 

  129. Luo ZH, He F, Zhang WT et al (2020) Effects of fluoride content on structure and properties of steel slag glass-ceramics. Mater Chem Phys 242:122531

    Article  CAS  Google Scholar 

  130. Dai WB, Li Y, Cang DQ et al (2014) BOF slag glass-ceramics prepared in different atmospheres from parents glasses with various reduction degree. ISIJ Int 54(12):2672–2677

    Article  CAS  Google Scholar 

  131. Okada YK (2004) Preparation and properties of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining. J Eur Ceram Soc 24(8):2367–2372

    Article  Google Scholar 

  132. Lin Q, Yang ZH, Xie HJ et al (2012) Research on preperation of glass ceramics with copper slag. Bull Chin Ceram Soc 31(5):1204–1207

    CAS  Google Scholar 

  133. Yang G, Yang H, Guo X (2010) Effect of mass ratio of CaO to MgO on crystallization of CaO-MgO-Al2O3-SiO2 glass-ceramics. J Chin Ceram Soc 38(11):2045–2049

    CAS  Google Scholar 

  134. Li L, Hu JH, Wang H (2011) Study on smelting reduction ironmaking of copper slag. Chin J Process Eng 11(1):65–71

    Google Scholar 

  135. Zhou XH, Li B, Zhang SR et al (2009) Effect of Ca/Si ratio on the microstructures and properties of CaO–B2O3–SiO2 glass-ceramics. J Mater Sci Mater Electron 20(3):262–266

    Article  CAS  Google Scholar 

  136. Yang ZH, Lin Q, Lu SC et al (2014) Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag. Ceram Int 40(5):7297–7305

    Article  CAS  Google Scholar 

  137. Zhao SZ, Wen Q, Zhang XY (2021) Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge. Ceram Int 47(15):21559–21609

    Article  Google Scholar 

  138. Lu X, Li Y, Ma S et al (2016) Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng 38(10):1386–1392

    CAS  Google Scholar 

  139. Dai WB, Li Y, Cang DQ et al (2018) Research on a novel modifying furnace for converting hot slag directly into glass-ceramics. J Clean Prod 172:169–177

    Article  CAS  Google Scholar 

  140. Li HX, Li BW, Deng LB et al (2019) Evidence for non-thermal microwave effect in processing of tailing-based glass-ceramics. J Eur Ceram Soc 39(4):1389–1396

    Article  CAS  Google Scholar 

  141. Zhang M, Wang WJ, Yuan TC (2022) Densification and grain growth kinetics of boron carbide powder during ultrahigh temperature spark plasma sintering. Trans Nonferrous Met Soc China 32(6):1948–1960

    Article  CAS  Google Scholar 

  142. Li ZJ, Xing HW (2019) Review of slag wool and cotton board prepared by quenched slag. Multipurp Util Miner Resour 2:26–29

    CAS  Google Scholar 

  143. Wu L, Hao YD (2015) The investigation of utilization status of copper slag resources and efficient utilization. China Nonferrous Metal 44(2):61–64

    Google Scholar 

  144. Xiao YL, Liu Y, Li YQ (2011) Status and development of mineral wool made from molten blast furnace slag. Baosteel Tech Res 2:3–8

    Google Scholar 

  145. Chen ZW, Wang H, Wang MH et al (2022) Investigation of cooling processes of molten slags to develop multilevel control method for cleaner production in mineral wool. J Clean Prod 339:130548

    Article  CAS  Google Scholar 

  146. Momber AW, Marquardt T (2016) Statistical investigations into the flow of copper slag abrasive particles through a blast-cleaning metering system. Powder Technol 301:179–185

    Article  CAS  Google Scholar 

  147. Subramani KC, Vasudevan A, Karthik K et al (2022) Insights of abrasive water jet polishing process characteristics and its advancements. Mater Today: Proc 52(3):1113–1120

    Google Scholar 

  148. Holt WS (2001) How nozzle pressure and feed rate affect the productivity of dry abrasive blasting. J Prot Coat Linings 18(10):82–104

    Google Scholar 

  149. Kambham K, Sangameswaran S, Datar SR et al (2007) Copper slag: optimization of productivity and consumption for cleaner production in dry abrasive blasting. J Clean Prod 15(5):465–473

    Article  Google Scholar 

  150. Jacob RC, Sergeev D, Müller M (2022) Valorisation of waste materials for high temperature thermal storage: a review. J Energy Storage 47:103645

    Article  Google Scholar 

  151. Navarro ME, Martí NM, Gil A et al (2012) Selection and characterization of recycled materials for sensible thermal energy storage. Sol Energy Mater Sol Cells 107:131–135

    Article  CAS  Google Scholar 

  152. Gutierrez A, Miró L, Gil A et al (2016) Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renew Sust Energy Rev 59:763–783

    Article  CAS  Google Scholar 

  153. Iain A, Smellie CA, Yusra A et al (2020) A simplified extractive metallurgy exercise to demonstrate selective extraction of copper. J Chem Educ 97(4):1203–1207

    Article  Google Scholar 

  154. Agalit H, Zari N, Maaroufi M (2017) Thermophysical and chemical characterization of induction furnace slags for high temperature thermal energy storage in solar tower plants. Sol Energy Mater Sol Cells 172:168–176

    Article  CAS  Google Scholar 

  155. Jemmal Y, Zari N, Asbik M et al (2020) Experimental characterization and thermal performance comparison of six Moroccan rocks used as filler materials in a packed bed storage system. J Energy Storage 30:101513

    Article  Google Scholar 

  156. Kuravi S, Trahan J, Goswami DY et al (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci 39(4):285–319

    Article  Google Scholar 

  157. Fuentes I, Ulloa C, Jiménez R et al (2020) The reduction of Fe-bearing copper slag for its use as a catalyst in carbon oxide hydrogenation to methane. A contribution to sustainable catalysis. J Hazard Mater 387:121693

    Article  CAS  Google Scholar 

  158. Li HL, Zhang WL, Wang J et al (2018) Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. Waste Manage 74:253–259

    Article  CAS  Google Scholar 

  159. Xu HB, Liu HL, Li A et al (2016) Experiment and thermodynamic analysis of the sawdust catalytic gasification with copper slag. Chem Ind Eng Prog 10:3142–3148

    Google Scholar 

  160. Deng N, Liu T, He GS et al (2022) Optimization of waste paper’s catalytic cracking to liquid fuel using copper slag as the catalyst based on response surface methodology. J Anal Appl Pyrol 162:105463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express the sincere appreciation to the National Natural Science Foundation of China for the financial support (Project No. 21978122 and 21566017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalong Liao.

Ethics declarations

Conflict of interest

This article has not been published elsewhere in whole or in part. All authors have read and approved the content, and agree to submit for consideration for publication in the journal. There are no any ethical/legal conflicts involved in the article.

Additional information

The contributing editor for this article was Veena Sahajwalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liao, Y., Ma, H. et al. Review on Comprehensive Recovery Valuable Metals and Utilization of Copper Slag. J. Sustain. Metall. 9, 439–458 (2023). https://doi.org/10.1007/s40831-023-00663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00663-8

Keywords

Navigation