Skip to main content

Advertisement

Log in

Review on the innovative uses of steel slag for waste minimization

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Piles of steel slag, a solid waste generated from the iron and steel industry, could be seen due to no utility found for the past century. Steel slag has now gained much attention because of its new applications. The properties of slag greatly influence its use and thus had got varied applications. The chemical composition of steel slag varies as the mineral composition of raw material such as iron ore and limestone varies. This paper reviews the characteristics of steel slag and its usage. The paper reviews recent developments in well-known applications to the steel slag such as aggregate in bituminous mixes, cement ingredient, concrete aggregate, antiskid aggregate, and rail road ballast. This paper also reviews novel uses such as mechanomutable asphalt binders, building material, green artificial reefs, thermal insulator, catalyst and ceramic Ingredient. The review is also done on utilization of solid waste for waste management by the novel methods like landfill daily cover material, sand capping, carbon sequestration, water treatment and solid waste management. Review also shows recovery of pure calcium carbonate and heavy metals from slag, providing opportunity for revenue generation. Steel slag once traded as free to use by steel industries is now sold in the market at some price. Its utilization is of great economic significance as it also contributes to the reduction of solid waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kalyoncu RS (2000) Slag—Iron and Steel-2000. U.S Geol Surv Miner Yearb 1–7. https://minerals.usgs.gov/minerals/pubs/commodity/iron_0026_steelslag/790400.pdf

  2. Joulazadeh M, Joulazadeh F (2010) Slag; value added steel industry byproducts. Arch Metall Mater 55(4):1137–1145

    Article  Google Scholar 

  3. McCaffrey R (2016) Review of 11th Global Slag Conference 2016. http://www.globalslag.com/conferences/global-slag/review/global-slag-review-2016. Accessed 28 Apr 2017

  4. IBM (2015) Indian Minerals Yearbook 2013 Slag-Iron and Steel (Final Release) Government of India Ministry of Mines Indian Bureau of Mines 16 Slag-Iron and Steel, New Delhi

  5. Greenpeace (2014) Coal impacts on water | Greenpeace International. Greenpeace International. Available: http://www.greenpeace.org/international/en/campaigns/climate-change/coal/Water-impacts/. Accessed 09 Nov 2016

  6. Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An Overview of Utilization of Steel Slag. Procedia Environ Sci 16:791–801

    Article  Google Scholar 

  7. Horii K, Kato T, Sugahara K, Tsutsumi N, Kitano Y (2015) Overview of iron/steel slag application and development of new utilization technologies.Nippon Steel & Sumitomo Technical Report 2015:109 

  8. Tiwari MK, Bajpai S, Dewangan U (2016) Steel slag utilization—overview in Indian perspective. Int J Adv Res 4(8):2232–2246

    Article  Google Scholar 

  9. Ahmed S, Dhoble YN, Gautam S (2012) Trends in patenting of technologies related to wastewater treatment. http://doi.org/10.2139/ssrn.2148918

  10. Kanchan S (2011) Bokaro’s displaced still await compensation. Down to Earth. http://www.downtoearth.org.in/news/bokaros-displaced-still-await-compensation-34322. Accessed 26 Oct 2016]

  11. Shi C, Day RL (1996) Selectivity of alkaline activators for the activation of slags. Cem Concr Aggregates 18(1):8–14

    Article  Google Scholar 

  12. Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 2011:1–13

    Article  Google Scholar 

  13. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21(3):285–293

    Article  Google Scholar 

  14. Tossavainen M, Engstrom F, Yang Q, Menad N, Lidstrom Larsson M, Bjorkman B (2007) Characteristics of steel slag under different cooling conditions. Waste Manag 27(10):1335–1344

    Article  Google Scholar 

  15. Shi C (2002) Characteristics and cementitious properties of ladle slag fines from steel production. Cem Concr Res 32(3):459–462

    Article  Google Scholar 

  16. Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng. 16(3):230–236

    Article  Google Scholar 

  17. FICCI (2014) Using steel slag in infrastructure development. FICCI. http://blog.ficci.com/steel-slag/5291/. Accessed 07 Apr 2017

  18. Chand S, Paul B, Kumar M (2015) An overview of use of Linz–Donawitz (LD) steel slag in agriculture. Curr World Environ 10(3):975–984

    Article  Google Scholar 

  19. CIMM (2010) Steel slag application in China. In: International Seminar on Application of Steel Slag, 2010. Belo Horizonte – MG – Brazil. http://www.feam.br/images/stories/arquivos/arquivossmrr/escoria/karen_sui.pdf

  20. Esmaeili M, Nouri R, Yousefian K (2015) Experimental comparison of the lateral resistance of tracks with steel slag ballast and limestone ballast materials. Proc Inst Mech Eng Part F J Rail Rapid Transit 231(2):1–10

    Google Scholar 

  21. Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 23(2):1118–1125

    Article  Google Scholar 

  22. Peng C (2014) Full steel slag aggregate concrete. CN103613346 A

  23. Yanbin L (2010) Rubber bituminous mixture partially using slag as coarse aggregate. CN101948272 A

  24. Dongxue L, Xinhua F, Xuequan W, Mingshu T (1997) Durability study of steel slag cement. Cem Concr Res 27(7):983–987

    Article  Google Scholar 

  25. Fwa TF, Choo YS, Liu Y (Jul. 2003) Effect of aggregate spacing on skid resistance of asphalt pavement. J Transp Eng 129(4):420–426

    Article  Google Scholar 

  26. Ma X et al., “Exterior wall batch light putty and preparation method thereof” CN 106566305, 2017

  27. Horii K, Tsutsumi N, Kitano Y, Kato T (2013) Processing and reusing technologies for steelmaking slag. Nippon Steel Tech Rep 104:123–129

    Google Scholar 

  28. Diener S, Andreas L, Herrmann I, Ecke H, Lagerkvist A (2010) Accelerated carbonation of steel slags in a landfill cover construction. Waste Manag 30:132–139

    Article  Google Scholar 

  29. Jos Eacute RM et al (2016) Steel slag to correct soil acidity and as silicon source in coffee plants. Afr J Agric Res 11(7):543–550

    Article  Google Scholar 

  30. Liu C, Huang S, Wollants P, Blanpain B, Guo M (2017) Valorization of BOF steel slag by reduction and phase modification: metal recovery and slag valorization. Metall Mater Trans B, 48(3):1602–1612

    Article  Google Scholar 

  31. Xue Y, Wu S, Hou H, Zha J (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater 138(2):261–268

    Article  Google Scholar 

  32. Tuovinen F (1989) Method for utilizing slag from ferroalloy production. US 4818290 A

  33. Sarkar R, Singh N, Das Kumar S (2010) Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles. Bull Mater Sci 33(3):293–298

    Article  Google Scholar 

  34. Qi T, Bin L (2008) A metallurgical slag production of ceramic tiles Methods. CN101386528 B

  35. Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682

    Article  Google Scholar 

  36. Eloneva S, Teir S, Salminen J, Fogelholm C-J, Zevenhoven R (2008) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47(18):7104–7111

    Article  Google Scholar 

  37. Bowden LI, Jarvis AP, Younger PL, Johnson KL (2009) Phosphorus removal from waste waters using basic oxygen steel slag. Environ Sci Technol 43(7):2476–2481

    Article  Google Scholar 

  38. Xue Y, Hou H, Zhu S (2009) Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. J Hazard Mater 162(1):391–401

    Article  Google Scholar 

  39. Tsai TT, Kao CM, Surampalli RY, Weng CH, Liang SH (2009) Treatment of TCE—contaminated groundwater using fenton—like oxidation activated with basic oxygen furnace slag. J Environ Eng 136(3):288–294

    Article  Google Scholar 

  40. Yin S, Gao B, Chen X (2016) Treatment of non-​degradable organic wastewater with steel slag catalyst. Huanjing Gongcheng Xuebao 10(4):1853–1856

    Google Scholar 

  41. Okoye PU, Abdullah AZ, Hameed BH (2017) Stabilized ladle furnace steel slag for glycerol carbonate synthesis via glycerol transesterification reaction with dimethyl carbonate. Energy Convers Manag 133:477–485

    Article  Google Scholar 

  42. Guerrini IA et al (2017) Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs. Urban For Urban Green 22:93–104

    Article  Google Scholar 

  43. Wu S, Xue Y, Ye Q, Chen Y (2007) Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ 42(7):2580–2585

    Article  Google Scholar 

  44. Timothy R (1992) Steel slag aggregates in Bituminous mixtures—final report. Bureau of Bridge and Rodway Technology, Pennsylvania Department of Transportation. 33

  45. Smirnovs J, Haritonovs V, Brencis G (2014) Bituminous coating composition. WO 2014079496 A1

  46. Wen H, Wo E (2014) Evaluation of steel slag as hot mix asphalt aggregate. Prepared for Washington Center for Asphalt Technology (WCAT)

  47. Moreno-Navarro F, Iglesias GR, Rubio-Gámez MC (2016) Experimental evaluation of using stainless steel slag to produce mechanomutable asphalt mortars for their use in smart materials. Smart Mater Struct 25(11):115036

    Article  Google Scholar 

  48. Monshi A, Asgarani MK (1999) Producing Portland cement from iron and steel slags and limestone. Cem Concr Res 29:1373–1377

    Article  Google Scholar 

  49. Akın Altun İ, Yılmaz İ (2002) Study on steel furnace slags with high MgO as additive in Portland cement. Cem Concr Res 32(8):1247–1249

    Article  Google Scholar 

  50. Qiang W, Mengxiao S, Jun Y (2016) Influence of classified steel slag with particle sizes smaller than 20 µm on the properties of cement and concrete. Constr Build Mater 123:601–610

    Article  Google Scholar 

  51. Zhao J, Wang D, Yan P, Zhang D, Wang H (2016) Self-cementitious property of steel slag powder blended with gypsum. Constr Build Mater 113:835–842

    Article  Google Scholar 

  52. Young R (1995) Method and apparatus for using steel slag in cement clinker production. US5421880 A

  53. Ya H, Liu B, Xusheng X, Yang H, Wang L (2011) Oilfield cementing slag cement slurry. CN102002352 A

  54. Beshr H, Almusallam A, Maslehuddin M (2003) Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Constr Build Mater 17(2):97–103

    Article  Google Scholar 

  55. Shujiang S (2016) A building material synthetic powder and its preparation method. CN 105777041

  56. Pati PR, Satapathy A (2015) Development of wear resistant coatings using LD slag premixed with Al2O3. J Mater Cycles Waste Manag 17(1):135–143

    Article  Google Scholar 

  57. WANG Z, Wen N, Cheng-hong F, Shu-jie G, Ying L (2012) Preparation of green artificial reefs concrete used steel slag and blast furnace slag. Multipurp Util Miner Resour 5:12

    Google Scholar 

  58. Huang X, Wang Z, Liu Y, Hu W, Ni W (2016) On the use of blast furnace slag and steel slag in the preparation of green artificial reef concrete. Constr Build Mater 112:241–246

    Article  Google Scholar 

  59. Hong W (2016) High-strength steel slag concrete for building artificial fish reef. CN105693168A

  60. Zuo R, Ni W, Yu M, Liu J, Zhang J, Xie M (2014) Method of producing concrete artificial fish reef by using steel slag and building rubbish. CN 103833322 A

  61. Woodward D, Woodside A, Ellis R, Phillips P, Walsh Jacobs I, Ramesh Sinhal U (2008) The effect of aggregate type and size on the performance of thin surfacing materials. In: International safer roads conference, pp 11–14

  62. Kim Y-G, Kim K-H (2008) Anti-slip composition and method of forming anti-slip layer using the same. WO 2008078873 A1

  63. Chen Z, Wu S, Pang L, Xie J (2016) Function investigation of stone mastic asphalt (SMA) mixture partly containing basic oxygen furnace (BOF) slag. J Appl Biomater Funct Mater 14(Suppl1): 68–72

    Google Scholar 

  64. Peng C, Liang Z (2014) Steel slag aggregate foam concrete. CN103641412 A

  65. Will J, Chapter M (2015) Slag has an additive effect of thermal insulation ceramic tiles. CN105060849 A

  66. System F, Peng Z, Hang L (2013) Glass ceramic prepared by compounding steel slag and red mud and preparation method thereof. CN103304141 A

  67. Kumar A (2014) Utilisation of wastes from integrated steel plant with special reference to India. Int J Eng Res Technol 3(1):6

    Google Scholar 

  68. Bouillot D, Descamps F, Van Mechelen P (2015) Production of a water barrier as cover, capping or liner for landfills. WO 2015086350 A1

  69. Takahashi T, Yabuta K (2002) New applications for iron and steelmaking slag. NKK Techn Rev 87:38–44

    Google Scholar 

  70. Metz B, Davidson O, Loos M, Meyer L (2005) Carbon di oxide capture and storage. Intergovernmental Panel on Climate Change, New York. https://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf

  71. Ukwattage NL, Ranjith PG, Li X (2017) Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97:15–22

    Article  Google Scholar 

  72. Said A, Mattila HP, Järvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771

    Article  Google Scholar 

  73. Said A, Mattila O, Eloneva S, Järvinen M (2015) Enhancement of calcium dissolution from steel slag by ultrasound. Chem Eng Process Process Intensif 89:1–8

    Article  Google Scholar 

  74. Baker MJ, David A, Blowes W, Ptacek CJ (1998) Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ Sci Technol 32(15):2308–2316

    Article  Google Scholar 

  75. Xue Y, Hou H, Zhu S (2009) Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J Hazard Mater 162(2):973–980

    Article  Google Scholar 

  76. Smith J, Brozowski E, Connolly M, Smith C, Reuland W (1998) Steel slag for remediation of contaminated groundwater. In: Christensen L (ed) Hazardous and industrial waste proceedings, 30th Mid-Atlantic Conference. CRC Press, Boca Raton, pp. 522–528

    Google Scholar 

  77. Feng D, van Deventer JSJ, Aldrich C (2004) Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Sep Purif Technol 40(1):61–67

    Article  Google Scholar 

  78. Karanfil T, Yadav A, C. Zhang, Ghosh S, Ahmed S (2006) Physico–chemical processes. Water Environ Res 78(10):1193–1260

  79. Grubb D, Wazne M (2010) Metal immobilization using slag fines. US20110049057A1

  80. Ning D, Liang Y, Song A, Duan A, Liu Z (2016) In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environ Sci Pollut Res 23(23):23638–23647

    Article  Google Scholar 

  81. Hori H, Kamijo A, Inoue M, Chino A, Wu Q, Kannan K (2016) Efficient decomposition of perchlorate to chloride ions in subcritical water by use of steel slag. Environ Sci Pollut Res 1–9

  82. Feng X, Gong M, Wu H, Feng Q, Feng C (2016) Waste steel slag-based catalyst preparation method. CN 106111138 A

  83. Yang X, Liu Y, Pan F, Li Z, Zhou Z, Jiang Y (2016) A method for treatment of polluted water by use of solid waste steel slag. CN 105858957 A

  84. Liu Y, You X, Yang Z, Yang M, Cao Y, Chen S (2013) Micro-oxygen expanded granular sludge bed-steel slag biological filter for sewage treatment system. CN 103058459 A

  85. Ahmed S, Popov V, Trevedi R (2008) Constructed wetlands: a sustainable wastewater treatment option for subtropical climate. Indian J Environ Prot 28:255–272

    Google Scholar 

  86. Lu S, Zhang X, Wang J, Pei L (2016) Impacts of different media on constructed wetlands for rural household sewage treatment. J Clean Prod 127:325–330

    Article  Google Scholar 

  87. Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manag 23(10):933–949

    Article  Google Scholar 

  88. Ye G, Burstrom E, Kuhn M, Piret J (2003) Reduction of steel-making slags for recovery of valuable metals and oxide materials. Scand J Metall 32(1):7–14

    Article  Google Scholar 

  89. Morita K, Guo M, Oka N, Sano N (2002) Resurrection of the iron and phosphorus resource in steel-making slag. J Mater Cycles Waste Manag 4(2):93–101

    Google Scholar 

  90. Hocheng H, Su C, Jadhav UU (2014) Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere 117:652–657

    Article  Google Scholar 

  91. Kim E et al (2016) New method for selective Cr recovery from stainless steel slag by NaOCl assisted alkaline leaching and consecutive BaCrO4 precipitation. Chem Eng J 295:542–551

    Article  Google Scholar 

  92. Wang Z, Qi J, Feng Y, Li K, Li X (2014) Preparation of catalytic particle electrodes from steel slag and its performance in a three-dimensional electrochemical oxidation system. J Ind Eng Chem 20(5):3672–3677

    Article  Google Scholar 

  93. Zhang J et al (2017) Method for preparing molecular sieve catalyst by using smelting waste steel slag. CN 106552662 A

  94. Ogawa N, Murai R, Washimi I (2017) Method for producing mixed gas by carbon dioxide reforming of hydrocarbons, JP 2017039631 A

  95. Kim E-H, Cho J-K, Yim S (2005) Digested sewage sludge solidification by converter slag for landfill cover. Chemosphere, 59(3):387–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Nathuji Dhoble.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhoble, Y.N., Ahmed, S. Review on the innovative uses of steel slag for waste minimization. J Mater Cycles Waste Manag 20, 1373–1382 (2018). https://doi.org/10.1007/s10163-018-0711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0711-z

Keywords

Navigation