Skip to main content
Log in

Steelmaking Slag as a Valuable Industrial Waste in the Preparation of 5-Substituted-1H-Tetrazoles on Water

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The steelmaking slag (SMS) is a by-product of steelmaking factories and a valuable industrial waste, which is a heterogeneous mixture of some common metal oxides such as SiO2, Al2O3, Fe2O3, CaO, and MgO. The SMS is a readily available, non-toxic, environmentally friendly, thermally stable, and reusable magnetic heterogeneous catalyst that can be easily handled and it showed a good magneto-catalytic performance. In this work, a successful and versatile water preparation of 5-substituted-1H-tetrazoles in the presence of steelmaking slag as a catalyst is reported via click reaction. A series of aliphatic and aromatic nitriles underwent via [3 + 2] cycloaddition reaction with sodium azide under standard conditions to afford a diverse array of 5-substituted-1H-tetrazoles in good to excellent yields. The reactions occur at almost low reaction times, with no need of inert reaction conditions and avoids usage or formation of any potentially toxic or explosive chemicals. The SMS catalyst was characterized by FT-IR spectroscopy, powder X-ray diffraction, energy‐dispersive X‐ray mapping and scanning electron microscopy, and X-ray fluorescence techniques. Moreover, the procedure is simple, cost effective, and reliable that holds potential for further applications in organic syntheses and industrial requirements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Kuwahara Y, Ohmichi T, Kamegawa T et al (2010) A novel conversion process for waste slag: synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities. J Mater Chem 20:5052–5062

    Article  CAS  Google Scholar 

  2. Borja Á, Tueros I, Belzunce MJ et al (2008) Investigative monitoring within the European Water Framework Directive: a coastal blast furnace slag disposal, as an example. J Environ Monit 10:453–462

    Article  CAS  Google Scholar 

  3. Mudhoo A, Sharma SK (2011) Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 41:999–1066

    Article  CAS  Google Scholar 

  4. Yi H, Xu G, Cheng H et al (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801

    Article  CAS  Google Scholar 

  5. Liu H, Lu H, Chen D et al (2009) Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process. Ceram Int 35:3181–3184

    Article  CAS  Google Scholar 

  6. Kuwahara Y, Tsuji K, Ohmichi T et al (2012) Transesterifications using a hydrocalumite synthesized from waste slag: an economical and ecological route for biofuel production. Catal Sci Technol 2:1842–1851

    Article  CAS  Google Scholar 

  7. Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manag 23:933–949

    Article  CAS  Google Scholar 

  8. Luo S, Zhou Y, Yi C (2012) Hydrogen-rich gas production from biomass catalytic gasification using hot blast furnace slag as heat carrier and catalyst in moving-bed reactor. Int J Hydrog Energy 37:15081–15085

    Article  CAS  Google Scholar 

  9. Pradeep A (2015) Effect of blast furnace slag on mechanical properties of glass fiber polymer composites. In: 2nd Int Conf Nanomater Technol (CNT 2014)

  10. Liu J, Yu Q, Peng J et al (2015) Thermal energy recovery from high-temperature blast furnace slag particles. Int Commun Heat Mass Transf 69:23–28

    Article  CAS  Google Scholar 

  11. Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags—a review. Resour Conserv Recycl 146:244–255

    Article  Google Scholar 

  12. Khater G (2011) Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag. Ceram Int 37:2193–2199

    Article  CAS  Google Scholar 

  13. Walling SA, Bernal SA, Gardner LJ et al (2018) Blast furnace slag-Mg(OH)2 cements activated by sodium carbonate. RSC Adv 8:23101–23118

    Article  CAS  Google Scholar 

  14. Du J, Bu Y, Guo S et al (2017) Effects of epoxy resin on ground-granulated blast furnace slag stabilized marine sediments. RSC Adv 7:36460–36472

    Article  CAS  Google Scholar 

  15. Kostura B, Kulveitova H, Leško J (2005) Blast furnace slags as sorbents of phosphate from water solutions. Water Res 39:1795–1802

    Article  CAS  Google Scholar 

  16. Johansson L, Gustafsson JP (2000) Phosphate removal using blast furnace slags and opoka-mechanisms. Water Res 34:259–265

    Article  CAS  Google Scholar 

  17. Maghchiche A, Naseri R, Haouam A (2012) Uses of blast furnace slag as complex fertilizer. J Chem Chem Eng 6:853–859

    CAS  Google Scholar 

  18. Doble M, Kruthiventi AK (2007) Green chemistry and processes. Academic, New York

    Google Scholar 

  19. Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797

    Article  CAS  Google Scholar 

  20. Anastas PT, Warner JC (1998) Principles of green chemistry. Green Chem 29–56

  21. Anastas PT, Beach ES (2007) Green chemistry: the emergence of a transformative framework. Green Chem Lett Rev 1:9–24

    Article  CAS  Google Scholar 

  22. Varma R (1999) Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green Chem 1:43–55

    Article  CAS  Google Scholar 

  23. Tanaka K (2009) Solvent-free organic synthesis. Wiley, New York

    Google Scholar 

  24. Kerton FM, Marriott R (2013) Alternative solvents for green chemistry, vol 20. Royal Society of Chemisty, Sheffield

    Google Scholar 

  25. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’solvents for extractions. J Chem Technol Biotechnol 80:1089–1096

    Article  CAS  Google Scholar 

  26. Horváth IT (2011) Fluorous chemistry. Springer, New York

    Google Scholar 

  27. Horváth IT (1998) Fluorous biphase chemistry. Acc Chem Res 31:641–650

    Article  Google Scholar 

  28. Gawande MB, Bonifácio VD, Luque R et al (2013) Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem Soc Rev 42:5522–5551

    Article  CAS  Google Scholar 

  29. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley, New York

    Google Scholar 

  30. Sarvary A, Maleki A (2015) A review of syntheses of 1, 5-disubstituted tetrazole derivatives. Mol Divers 19:189–212

    Article  CAS  Google Scholar 

  31. Mittal R, Awasthi SK (2019) Recent advances in the synthesis of 5-substituted 1H-tetrazoles: a complete survey (2013–2018). Synthesis 51:3765–3783

    Article  CAS  Google Scholar 

  32. Wei C-X, Bian M, Gong G-H (2015) Tetrazolium compounds: synthesis and applications in medicine. Molecules 20:5528–5553

    Article  CAS  Google Scholar 

  33. Abdollahi-Alibeik M, Moaddeli A (2016) Cu-MCM-41 nanoparticles: an efficient catalyst for the synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition reaction of nitriles and sodium azide. J Chem Sci 128:93–99

    Article  CAS  Google Scholar 

  34. Herr RJ (2002) 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393

    Article  CAS  Google Scholar 

  35. Voitekhovich SV, Lesnyak V, Gaponik N et al (2015) Tetrazoles: unique capping ligands and precursors for nanostructured materials. Small 11:5728–5739

    Article  CAS  Google Scholar 

  36. Frija LMT, Ismael A, Cristiano MLS (2010) Photochemical transformations of tetrazole derivatives: applications in organic synthesis. Molecules 15:3757–3774

    Article  CAS  Google Scholar 

  37. Kumar A, Kumar S, Khajuria Y et al (2016) A comparative study between heterogeneous stannous chloride loaded silica nanoparticles and a homogeneous stannous chloride catalyst in the synthesis of 5-substituted 1H-tetrazole. RSC Adv 6:75227–75233

    Article  CAS  Google Scholar 

  38. Frija L, Cristiano MLS, Gómez-Zavaglia A et al (2014) Genesis of rare molecules using light-induced reactions of matrix-isolated tetrazoles. J Photochem Photobiol C 18:71–90

    Article  CAS  Google Scholar 

  39. Yu H-L, Zhang F, Lan T et al (2014) Effects of 6-(4-chlorophenoxy)-tetrazolo [5, 1-a] phthalazine on anticoagulation in mice and the inhibition of experimental thrombosis in rats. J Cardiovasc Pharmacol 64:560–566

    Article  CAS  Google Scholar 

  40. Bladin J (1885) Ueber von dicyanphenylhydrazin abgeleitete verbindungen. Ber Dtsch Chem Ges 18:1544–1551

    Article  Google Scholar 

  41. Demko ZP, Sharpless KB (2001) Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J Org Chem 66:7945–7950

    Article  CAS  Google Scholar 

  42. Azadi G, Ghorbani-Choghamarani A, Shiri L (2017) Copper (II) immobilized on Fe3O4@SiO2@l-Histidine: a reusable nanocatalyst and its application in the synthesis of 5-substituted 1H-tetrazoles. Transit Met Chem 42:131–136

    Article  CAS  Google Scholar 

  43. Nanjundaswamy HM, Abrahamse H (2014) Green synthesis of 5-substituted-1H-1, 2, 3, 4-tetrazoles and 1-sustituted-1H-1, 2, 3, 4-tetrazoles via [3+2] cycloaddition by reusable immobilezed AlCl3 on γ-Al2O3. Heterocycles 89:2137–2150

    Article  CAS  Google Scholar 

  44. Roh J, Vávrová K, Hrabálek A (2012) Synthesis and functionalization of 5-substituted tetrazoles. Eur J Org Chem 2012:6101–6118

    Article  CAS  Google Scholar 

  45. Maleki A, Sarvary A (2015) Synthesis of tetrazoles via isocyanide-based reactions. RSC Adv 5:60938–60955

    Article  CAS  Google Scholar 

  46. Ghodsinia SS, Akhlaghinia B (2015) A rapid metal free synthesis of 5-substituted-1H-tetrazoles using cuttlebone as a natural high effective and low cost heterogeneous catalyst. RSC Adv 5:49849–49860

    Article  CAS  Google Scholar 

  47. Kumar S, Kumar A, Agarwal A et al (2015) Synthetic application of gold nanoparticles and auric chloride for the synthesis of 5-substituted 1H-tetrazoles. RSC Adv 5:21651–21658

    Article  CAS  Google Scholar 

  48. Matlack A (2010) Introduction to green chemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  49. Lakshmi Kantam M, Kumar KS, Sridhar C (2005) Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles. Adv Synth Catal 347:1212–1214

    Article  CAS  Google Scholar 

  50. Mitra B, Mukherjee S, Pariyar GC et al (2018) One pot three-component synthesis of 5-substituted 1H-tetrazole from aldehyde. Tetrahedron Lett 59:1385–1389

    Article  CAS  Google Scholar 

  51. Kobayashi E, Togo H (2018) Facile one-pot preparation of 5-aryltetrazoles and 3-arylisoxazoles from aryl bromides. Tetrahedron 74:4226–4235

    Article  CAS  Google Scholar 

  52. Lamie PF, Philoppes JN, Azouz AA et al (2017) Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J Enzym Inhib Med Chem 32:805–820

    Article  CAS  Google Scholar 

  53. Yao X, Yu Q, Xu G et al (2018) The characteristics of syngas production from bio-oil dry reforming utilizing the waste heat of granulated blast furnace slag. Int J Hydrog Energy 43:22108–22115

    Article  CAS  Google Scholar 

  54. Movaheditabar P, Javaherian M, Nobakht V (2017) CuO/aluminosilicate as an efficient heterogeneous nanocatalyst for the synthesis and sequential one-pot functionalization of 5-substituted-1H-tetrazoles. React Kinet Mech Catal 122:217–228

    Article  CAS  Google Scholar 

  55. Movaheditabar P, Javaherian M (2019) Nano silica melamine trisulfonic acid as an efficient and reusable heterogeneous catalyst for the synthesis of 5-substituted-1H-tetrazoles. Org Chem Res 5:174–189

    Google Scholar 

  56. Movaheditabar P, Javaherian M, Nobakht V (2021) Igneous rock powder as a heterogeneous multi-oxide nano-catalyst for the synthesis of 5-substituted-1H-tetrazoles in polyethylene glycol. J Iran Chem Soc 10:1–12

    Google Scholar 

  57. Wang Z, Liu Z, Cheon SH (2015) Facile synthesis of 5-substituted 1H-tetrazoles catalyzed by tetrabutylammonium hydrogen sulfate in water. Bull Korean Chem Soc 36:198–202

    Article  CAS  Google Scholar 

  58. Meshram GA, Deshpande SS, Wagh PA et al (2014) Silica supported lanthanum triflate mediated synthesis of 5-substituted-1H tetrazoles. Tetrahedron Lett 55:3557–3560

    Article  CAS  Google Scholar 

  59. Salahshournia B, Hamadi H, Nobakht V (2018) Engineering a Cu-MOF nano-catalyst by using post-synthetic modification for the preparation of 5-substituted 1H-tetrazoles. Appl Organomet Chem 32:e4416

    Article  CAS  Google Scholar 

  60. Akhlaghinia B, Rezazadeh S (2012) A novel approach for the synthesis of 5-substituted-1H-tetrazoles. J Braz Chem Soc 23:2197–2203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support received from the committee grant of the Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran (Grant No. SCU.SC98.440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Javaherian.

Ethics declarations

Conflict of interest

All authors have received research grants from Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. There are no conflicts of interest to declare.

Additional information

The contributing editor for this article was Veena Sahajwalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movaheditabar, P., Javaherian, M. & Nobakht, V. Steelmaking Slag as a Valuable Industrial Waste in the Preparation of 5-Substituted-1H-Tetrazoles on Water. J. Sustain. Metall. 8, 882–892 (2022). https://doi.org/10.1007/s40831-022-00533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00533-9

Keywords

Navigation