Skip to main content
Log in

Highly Acidic, γ-Al2O3 Nanorods and SiO2 Nanoparticles Recovered from Solid Wastes as Promising Catalysts for Production of Ethylene and Diethyl Ether Biofuels

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Herein, low-cost, highly acidic γ-Al2O3 and silica were recovered from aluminum cans and silica beads wastes, respectively, using simple precipitation method. The prepared catalysts underwent thorough characterization using various techniques, including Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Brunauer–Emmett–Teller (BET) surface area measurements. Quantitative and qualitative measurements of total surface acidity, including Brönsted and Lewis acidity types, were determined through temperature-programmed desorption of pyridine (PY-TPD) and dimethyl pyridine (DMPY-TPD) as probe molecules. The prepared catalysts were tested in the dehydration of ethanol to ethylene and diethyl ether at a temperature range of 300–400 °C. The results revealed that the γ-Al2O3 catalyst outperformed silica at all reaction temperatures. Various kinetic parameters were investigated for the γ-Al2O3 catalyst within a temperature range of 200–400 °C, including the impact of weight hourly space velocity. Additionally, the catalyst exhibited impressive stability throughout four consecutive catalytic cycles, highlighting its durability over time.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Abdelkader, A., Osman, A.I., Halawy, S.A., Mohamed, M.A.: Preparation and characterization of mesoporous γ-Al2O3 recovered from aluminum cans waste and its use in the dehydration of methanol to dimethyl ether. J Mater Cycles Waste Manag. 20, 1428–1436 (2018). https://doi.org/10.1007/s10163-018-0702-0

    Article  Google Scholar 

  2. Grande, L., Vicente, M.Á., Korili, S.A., Gil, A.: Synthesis strategies of alumina from aluminum saline slags. Process. Saf. Environ. Prot. 172, 1010–1028 (2023). https://doi.org/10.1016/j.psep.2023.03.006

    Article  Google Scholar 

  3. El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technol. 132, 137–144 (2003). https://doi.org/10.1016/S0032-5910(03)00047-0

    Article  Google Scholar 

  4. Fernandes, E.P., Silva, T.S., Carvalho, C.M., Selvasembian, R., Chaukura, N., Oliveira, L.M.: Meili, L: Efficient adsorption of dyes by γ-alumina synthesized from aluminum wastes: Kinetics, isotherms, thermodynamics and toxicity assessment. J. Environ. Chem. Eng. 9, 106198 (2021). https://doi.org/10.1016/j.jece.2021.106198

    Article  Google Scholar 

  5. Sabarinathan, P., Annamalai, V.E.: Removal of aluminosilicate bond and process optimization on recovery of sol gel alumina abrasive grain from abrasive industry waste. SILICON 13, 495–505 (2021). https://doi.org/10.1007/s12633-020-00466-6

    Article  Google Scholar 

  6. Kumar, P., Chakraborty, S.: Rice husk-derived silica nanoparticles using optimized titrant concentration for the one-step nanofluid preparation. In Sustainable Chemical, Mineral and Material Processing: Select proceedings of 74th Annual Session of Indian Institute of Chemical Engineers. 303–318 (2022). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7264-5

  7. Abdullah, N., Ainirazali, N., Chong, C.C., Razak, H.A., Setiabudi, H.D., Chin, S.Y., Jalil, A.A.: Effect of Ni loading on SBA-15 synthesized from palm oil fuel ash waste for hydrogen production via CH4 dry reforming. Int. J. Hydrog. Energy 45, 18411–18425 (2020). https://doi.org/10.1016/j.ijhydene.2019.09.093

    Article  Google Scholar 

  8. Razak, H., Abdullah, N., Setiabudi, H.D., Yee, C.S., Ainirazali, N.: Refluxed synthesis of SBA-15 using sodium silicate extracted from oil palm ash for dry reforming of methane. Mater Today Proc. 19, 1363–1372 (2019). https://doi.org/10.1016/j.matpr.2019.11.150

    Article  Google Scholar 

  9. Li, G., Wang, B., Sun, Q., Xu, W.Q., Han, Y.: Adsorption of lead ion on amino-functionalized fly-ash-based SBA-15 mesoporous molecular sieves prepared via two-step hydrothermal method. Microporous Mesoporous Mater. 252, 105–115 (2017). https://doi.org/10.1016/j.micromeso.2017.06.004

    Article  Google Scholar 

  10. Mi, H.S.N., Panatarani, C., Faizal, F., Mulyana, C., Joni, I.M.: Synthesis of mesoporous Silica SBA-15 from geothermal sludge. Mater. 27, 101637 (2023). https://doi.org/10.1016/j.mtla.2022.1016377

    Article  Google Scholar 

  11. Chiang, H., Bhan, A.: Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal. 271, 251–261 (2010). https://doi.org/10.1016/j.jcat.2010.01.021

    Article  Google Scholar 

  12. Qi, D.H., Chen, H., Geng, L.M., Bian, Y.Z.: Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine. Renew Energ. 36, 1252–1258 (2011). https://doi.org/10.1016/j.renene.2010.09.021

    Article  Google Scholar 

  13. Rossetti, I., Compagnoni, M., Finocchio, E., Ramis, G., Di Michele, A., Millot, Y., Dzwigaj, S.: Ethylene production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery. Appl. Catal. B Environ. 210, 407–420 (2017). https://doi.org/10.1016/j.apcatb.2017.04.007

    Article  Google Scholar 

  14. Galadima, A., Muraza, O.: Zeolite catalysts in upgrading of bioethanol to fuels range hydrocarbons: A review. J. Ind. Eng. Chem. 31, 1–14 (2015). https://doi.org/10.1016/j.jiec.2015.07.015

    Article  Google Scholar 

  15. Jamil, F., Aslam, M., Ala’a, H., Bokhari, A., Rafiq, S., Khan, Z., Bakar, M.S.A.: Greener and sustainable production of bioethylene from bioethanol: Current status, opportunities and perspectives. Rev Chem Eng. 38:85-207 (2022). https://doi.org/10.1515/revce-2019-0026

  16. Yakovleva, I.S., Banzaraktsaeva, S.P., Ovchinnikova, E.V., Chumachenko, V.A., Isupova, L.A.: Catalytic dehydration of bioethanol to ethylene. Catal. Ind. 8, 152–167 (2016). https://doi.org/10.1134/S2070050416020148

    Article  Google Scholar 

  17. Venu, H., Madhavan, V.: Influence of diethyl ether (DEE) addition in ethanol-biodiesel-diesel (EBD) and methanol-biodiesel-diesel (MBD) blends in a diesel engine. Fuel 189, 377–390 (2017). https://doi.org/10.1016/j.fuel.2016.10.101

    Article  Google Scholar 

  18. Uslu, S., Celik, M.B.: Prediction of engine emissions and performance with artificial neural networks in a single cylinder diesel engine using diethyl ether. Eng Sci Technol. 21, 1194–1201 (2018). https://doi.org/10.1016/j.jestch.2018.08.017

    Article  Google Scholar 

  19. Di Cosimo, J.I., Dıez, V.K., Xu, M., Iglesia, E., Apesteguıa, C.R.: Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178, 499–510 (1998). https://doi.org/10.1006/jcat.1998.2161

    Article  Google Scholar 

  20. Ramesh, K., Hui, L.M., Han, Y.F., Borgna, A.: Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catal. Commun. 10, 567–571 (2009). https://doi.org/10.1016/j.catcom.2008.10.034

    Article  Google Scholar 

  21. Sembiring, S., Riyanto, A., Situmeang, R., Sembiring, Z.: Bituminous composite comprising amorphous silica from rice husks. Ceram Silik 63, (2019). https://doi.org/10.13168/cs.2019.0021

  22. Gao, Y., Hu, Y., Yao, K.: Surface molecularly imprinted polymers for solid-phase extraction of (–)-epigallocatechin gallate from toothpaste. Front. Chem. Sci. Eng. 9, 467–478 (2015). https://doi.org/10.1007/s11705-015-1526-2

    Article  Google Scholar 

  23. Abdelkader, A., Hussien, B.M., Fawzy, E.M., Ibrahim, A.A.: Boehmite nanopowder recovered from aluminum cans waste as a potential adsorbent for the treatment of oilfield produced water. Appl Petrochem Res. 11, 137–146 (2021). https://doi.org/10.1007/s13203-021-00267-x

    Article  Google Scholar 

  24. ElKatatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: A novel synthesis of high area alumina via H2O2 precipitated boehmite from sodium aluminate solutions. J Chem Technol. 72, 320-328 (1998). 0268-2575/98/s17.5

  25. Maddalena, R., Hall, C., Hamilton, A.: Effect of silica particle size on the formation of calcium silicate hydrat [CSH] using thermal analysis. Thermochim. Acta 672, 142–149 (2019). https://doi.org/10.1016/j.tca.2018.09.003

    Article  Google Scholar 

  26. Santos, B.P., Arias, J.R., Jorge, F.E., Santos, R.P., Fernandes, B.S., Candido, L.S., Marques, M.F.V.: PVDF containing different oxide nanoparticles for application in oil and gaspipelines. Mater Today Commun. 26, 101743 (2021). https://doi.org/10.1016/j.mtcomm.2020.101743

    Article  Google Scholar 

  27. Sifontes, Á.B., Gutierrez, B., Mónaco, A., Yanez, A., Díaz, Y., Méndez, F.J., Brito, J.L.: Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract. Biotechnol Rep. 4, 21–29 (2014). https://doi.org/10.1016/j.btre.2014.07.001

    Article  Google Scholar 

  28. Osman, A.I., Abu-Dahrieh, J.K., Rooney, D.W., Halawy, S.A., Mohamed, M.A., Abdelkader, A.: Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Appl. Catal. B Environ. 127, 307–315 (2012). https://doi.org/10.1016/j.apcatb.2012.08.033

    Article  Google Scholar 

  29. Darmakkolla, S.R., Tran, H., Gupta, A., Rananavare, S.B.: A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides. RSC Adv. 6, 93219–93230 (2016). https://doi.org/10.1039/C6RA20355H

    Article  Google Scholar 

  30. Mekhemer, G.H., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies. J. Catal. 230, 109–122 (2005). https://doi.org/10.1016/j.jcat.2004.09.030

    Article  Google Scholar 

  31. Dabbagh, H.A., Taban, K., Zamani, M.: Effects of vacuum and calcination temperature on the structure, texture, reactivity, and selectivity of alumina: Experimental and DFT studies. J Mol Catal A Chem: Chemical. 326, 55–68 (2010). https://doi.org/10.1016/j.molcata.2010.04.007

    Article  Google Scholar 

  32. Wang, C., Guo, H., Leng, S., Yu, J., Feng, K., Cao, L., Huang, J.: Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review. Crit. Rev. Solid State Mater. Sci. 46(4), 330–348 (2021). https://doi.org/10.1080/10408436.2020.1819198

    Article  Google Scholar 

  33. Ijaz, A., Yagci, M.B., Ow-Yang, C.W., Demirel, A.L., Miko, A.: Formation of mesoporous silica particles with hierarchical morphology. Microporous Mesoporous Mater. 303, 110240 (2020). https://doi.org/10.1016/j.micromeso.2020.110240

    Article  Google Scholar 

  34. Gomaa, A.A., Halawy, S., Abdelkader, A.: Preparation and characterization of nanocrystalline NiO by the thermal decomposition of oxalate salts for the dehydrogenation of 2-butanol to methyl ethyl ketone. Aswan Univ J Environ Studs. 2, 178–189 (2021). https://doi.org/10.21608/aujes.2021.77260.1025

    Article  Google Scholar 

  35. Khalfaoui, M., Knani, S., Hachicha, M.A., Lamine, A.B.: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J. Colloid Interface sci. 263(2), 350–356 (2003). https://doi.org/10.1016/S0021-9797(03)00139-5

    Article  Google Scholar 

  36. Li, J., Xu, X., Hao, Z., Zhao, W.: Mesoporous silica supported cobalt oxide catalysts for catalytic removal of benzene. J. Porous Mater. 15, 163–169 (2008). https://doi.org/10.1007/s10934-007-9119-1

    Article  Google Scholar 

  37. Muthuswamy, E.: Synthetic levers enabling control of phase, size, and morphology in transition metal phosphide nanoparticles (iron, nickel) (Doctoral dissertation, Wayne State University) (2010). http://digitalcommons.wayne.edu/oa_dissertations. Accessed Aug 2023

  38. Ferreira, R.K.M., Miled, M.B., Nishihora, R.K., Christophe, N., Carles, P., Motz, G., Bernard, S.: Low temperature in situ immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si–C–O–N (H) to promote electrocatalytic water oxidation in alkaline media. Nanoscale Adv. 5, 701–710 (2023). https://doi.org/10.1039/D2NA00821A

    Article  Google Scholar 

  39. Trawczyński, J. T. Effect of aluminum hydroxide precipitation conditions on the alumina surface acidity. Ind. Amp; Eng. Chem., 35(1), 241–244 (1996). https://doi.org/10.1021/ie940703n

  40. López, T., Gómez, R.: Evidence for Lewis and Brønsted acid sites on MgO obtained by sol–gel. J Sol Gel Sci Technol. 13, 1043–1047 (1998). https://doi.org/10.1023/A:1008624718503

    Article  Google Scholar 

  41. Zaki, T.: Catalytic dehydration of ethanol using transition metal oxide catalysts. J. Colloid Interface Sci. 284, 606–613 (2005). https://doi.org/10.1016/j.jcis.2004.10.048

    Article  Google Scholar 

  42. Takahara, I., Saito, M., Inaba, M., Murata, K.: Dehydration of ethanol into ethylene over solid acid catalysts. Catal. Lett. 105, 249–252 (2005). https://doi.org/10.1007/s10562-005-8698-1

    Article  Google Scholar 

  43. Phung, T.K., Busca, G.: Ethanol dehydration on silica-aluminas: active sites and ethylene/diethyl ether selectivities. Catal. Commun. 68, 110–115 (2015). https://doi.org/10.1016/j.catcom.2015.05.009

    Article  Google Scholar 

  44. Xiang, H., Xin, R., Prasongthum, N., Natewong, P., Sooknoi, T., Wang, J., Fan, X.: Catalytic conversion of bioethanol to value-added chemicals and fuels: A review. RCM 1, 47–68 (2022). https://doi.org/10.1016/j.recm.2021.12.002

    Article  Google Scholar 

  45. Wu, C.Y., Wu, H.S.: Ethylene formation from ethanol dehydration using ZSM-5 catalyst. ACS Omega 2(8), 4287–4296 (2017). https://doi.org/10.1021/acsomega.7b00680

    Article  Google Scholar 

  46. Chen, G., Li, S., Jiao, F., Yuan, Q.: Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal. Today 125, 111–119 (2007). https://doi.org/10.1016/j.cattod.2007.01.071

    Article  Google Scholar 

  47. Gomaa, A.A., Osman, A.I., Halawy, S.A., Mohamed, M.A., Abdelkader, A.: Synthesis of highly basic, low-cost iron oxides from tin can waste as valorization of municipal solid waste and study of their catalytic efficiency as potent catalysts for MEK production. J. Mater. Cycles Waste Manag. (2023). https://doi.org/10.1007/s10163-023-01865-8

    Article  Google Scholar 

  48. Chen, Y., Wu, Y., Tao, L., Dai, B., Yang, M., Chen, Z., Zhu, X.: Dehydration reaction of bio-ethanol to ethylene over modified SAPO catalysts. J. Ind. Eng. Chem. 16, 717–722 (2010). https://doi.org/10.1016/j.jiec.2010.07.013

    Article  Google Scholar 

  49. Singh, B., Sharma, V., Gaikwad, R.P., Fornasiero, P., Zboril, R., Gawande, M.B.: Single-atom catalysts: a sustainable pathway for the advanced catalytic applications. Small 17, 2006473 (2021). https://doi.org/10.1002/smll.202006473

    Article  Google Scholar 

  50. Krutpijit, C., Tochaeng, P., Jongsomjit, B.: Temperature and ethanol concentration effects on catalytic ethanol dehydration behaviors over alumina-spherical silica particle composite catalysts. Catal. Commun. 145, 106102 (2020). https://doi.org/10.1016/j.catcom.2020.106102

    Article  Google Scholar 

  51. Deng, L., Han, S., Zhou, D., Li, Y., Shen, W.: Morphology dependent effect of γ-Al2O3 for ethanol dehydration: Nanorods and nanosheets. Cryst Eng Comm. 24, 796–804 (2022). https://doi.org/10.1039/D1CE01316E

    Article  Google Scholar 

  52. Phung, T.K., Busca, G.: Diethyl ether cracking and ethanol dehydration: acid catalysis and reaction paths. J. Chem. Eng. 272, 92–101 (2015). https://doi.org/10.1016/j.cej.2015.03.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abouelhassan A. Gomaa.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, A.A., Abdelkader, A. & Khodari, M. Highly Acidic, γ-Al2O3 Nanorods and SiO2 Nanoparticles Recovered from Solid Wastes as Promising Catalysts for Production of Ethylene and Diethyl Ether Biofuels. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02518-z

Keywords

Navigation