Skip to main content
Log in

A Study on the Selective Leaching of Valuable Metals and the Configuration of Iron Silicon Phases in Copper Smelting Slag by Oxidative Pressure Leaching

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In this research, copper smelting slag was processed under a pressurized oxygen atmosphere and low acidity conditions to achieve the selective extraction of copper and zinc and to let the iron and silicon in the slag be transformed and reconstructed into hematite and amorphous silica, respectively. The composition and the structure of the raw materials and the leaching residue were characterized by ICP-AES and XRD, and the mechanism of the selective leaching of copper and the phase reconstruction of ferrous and silicon were revealed. The results showed that under the following conditions: a sulfuric acid concentration of 0.4 mol/L, a reaction temperature of 200 °C, a liquid–solid ratio of 6 mL/g, an oxygen partial pressure of 600 kPa, a leaching time of 80 min, and a particle size of − 150 to + 74 μm, the leaching efficiencies of the Cu, Zn, Fe, and Si from copper smelting slag were > 95 wt%, > 98 wt%, < 0.6 wt%, and < 2.0 wt%, respectively. Moreover, the iron and silicon in the leached residue were in the form of hematite and amorphous SiO2, respectively, and the contents of copper and zinc were both less than 0.1 wt%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anand S, Rao KS, Jena PK (1983) Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values. Hydrometallurgy 10(3):305–312

    Article  CAS  Google Scholar 

  2. Agnello AC, Potysz A, Fourdrin C, Huguenot D, Chauhan PS (2018) Impact of pyrometallurgical slags on sunflower growth, metal accumulation and rhizosphere microbial communities. Chemosphere 208:626–639

    Article  CAS  Google Scholar 

  3. Bo CL, Ma SH, Zheng SL, Xie H (2012) Research on kinetics of desilication process of high aluminum fly ash in alkaline medium. J Chin Soc Rare Earths 30:154–157

    Google Scholar 

  4. Ciro E, Alzate A, Lopez E, Serna C, Gonzalez O (2019) Neodymium recovery from scrap magnet using ammonium persulfate. Hydrometallurgy 186:226–234

    Article  CAS  Google Scholar 

  5. Dufresne RE (1976) Quick leach of siliceous zinc ore. J Metals 28(2):8–12

    CAS  Google Scholar 

  6. Du ZC, Li HQ, Bao WJ, Li SP, Cai WQ (2011) Research on reaction mechanism of desilication process of high aluminum fly ash by alkali solution. Chin J Process Eng 11(3):442–447

    CAS  Google Scholar 

  7. Guo ZQ, Pan J, Zhu DQ (2018) Green and efficient utilization of waste ferric-oxide desulfurizer to clean waste copper slag by the smelting reduction-sulfurizing process. J Clean Prod 199:891–899

    Article  CAS  Google Scholar 

  8. Hua Y, Lin Z, Yan Z (2002) Application of microwave irradiation to quick leach of zinc silicate ore. Miner Eng 15(6):451–456

    Article  CAS  Google Scholar 

  9. He SM, Wang JK, Yan JF (2011) Pressure leaching of synthetic zinc silicate in sulfuric acid medium. Hydrometallurgy 108(3–4):171–176

    Article  CAS  Google Scholar 

  10. He SY, Li HQ, Li SP, Li YH, Xie Q (2014) Kinetics of desilication process of fly ash with high aluminum from pulverized coal fired boiler in alkali solution. Chin J Nonferrous Met 24(7):1888–1894

    CAS  Google Scholar 

  11. Huang FR, Liao YL, Zhou J, Wang YY, Li H (2015) Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution. Sep Purif Technol 156(2):572–581

    Article  CAS  Google Scholar 

  12. Huang FR, Liao YL, Wang YY, Cao L (2016) Optimization of pressure oxidative acid leaching of nickel converter slag by response surface methodology. Res Environ Sci 29(6):894–899

    CAS  Google Scholar 

  13. Holland K, Hürman Eriç R, Taskinen P, Jokilaakso A (2019) Upgrading copper slag cleaning tailings for re-use. Miner Eng 133:35–42

    Article  CAS  Google Scholar 

  14. Kaksonen AH, Lavonen L, Kuusenaho M, Kolli A, Tuovinen OH (2011) Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Miner Eng 24:1113–1121

    Article  CAS  Google Scholar 

  15. Kaksonen AH, Särkijärvi S, Peuraniemi E, Junnikkala S, Puhakka JA, Tuovinen OH (2017) Metal biorecovery in acid solutions from a copper smelter slag. Hydrometallurgy 168:135–140

    Article  CAS  Google Scholar 

  16. Khalid MK, Hamuyuni J, Agarwal V, Pihlasalo J, Haapalainen M, Lundstrӧm M (2019) Sulfuric acid leaching for capturing value from copper rich converter slag. J Clean Prod 215:1005–1013

    Article  CAS  Google Scholar 

  17. Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D, Satapathy BS, Pathak H (2020) Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci Total Environ 699:134330

    Article  CAS  Google Scholar 

  18. Li YS (2009) Study on environmental impact of recycling copper process from copper-slag. PhD thesis, China University of Mining and Technology Beijing China

  19. Liu XT, Wang BD, Xiao YF, Zhao LJ, Sun Q (2013) Predesilication process of alumina-rich fly ash in alkali solution. China Powder Sci Technol 19(6):24–27

    Google Scholar 

  20. Liao YL, Huang FR, Zhou J, Li BJ (2015) Kinetics and behavior of cobalt extraction from low nickel matte converter slag by pressure oxidative leaching with sulfuric acid. CIESC J 66(10):3971–3978

    CAS  Google Scholar 

  21. Liao YL, Ye C, Wang YY, Cao L (2017) Resource utilization of copper smelter slag-a state-of-the-arts review. Chem Ind Eng Progress 36(08):3066–3073

    Google Scholar 

  22. Lv XL, Zhong SP, Yin WZ, Chi XP, Chen H, Zhu ML (2017) Effect of time of slag gradual cooling oil flotation performance in a certain copper smelter. Nonferrous Met Eng Res 38(6):1–7

    Google Scholar 

  23. Li SW, Pan J, Zhu DQ, Guo ZQ, Xu JW, Chou JL (2019) A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na2CO3 and CaO. Powder Technol 347:159–169

    Article  CAS  Google Scholar 

  24. Mikoda B, Potysz A, Kmiecik E (2019) Bacterial leaching of critical metal values from Polish copper metallurgical slags using acidithiobacillus thiooxidans. J Environ Manage 236:436–445

    Article  CAS  Google Scholar 

  25. Parhi PK, Park KH, Senanayake G (2013) A kinetic study on hydrochloric acid leachingof nickel from Ni–Al2O3 spent catalyst. J Ind Eng Chem 19(2):589–594

    Article  CAS  Google Scholar 

  26. Ramos-Cano J, González-Zamarripa G, Carrillo-Pedroza FR, de Jesús Soria-Aguilar M, Hurtado-Macías A, Cano-Vielma A (2016) Kinetics and statistical analysis of nickel leaching from spent catalyst in nitric acid solution. Int J Miner Process 148:41–47

    Article  CAS  Google Scholar 

  27. Razavian M, Fatemi S, Najafabadi AT (2020) Extraction of highly pure nickel hydroxide from spent NiO/Al2O3 catalyst: Statistical study on leaching by sulfuric acid lixiviant and selective precipitation. J Environ Chem Eng 8(2):103660

    Article  CAS  Google Scholar 

  28. Reid M, Papangelakis VG (2006) New data on hematite solubility in sulphuric acid solutions from 130 to 270 degrees. In: Dutrizac JE, Riveros PA (eds) Iron control technology, 36th annual hydrometallurgy meeting of CIM, Montreal, Canada, pp 673‒686

  29. Tromans D (1998) Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects. Hydrometallurgy 50(3):279–296

    Article  CAS  Google Scholar 

  30. Wang GH (2014) Copper smelting slag slow cooling technology research and practice. Cop Eng 4:27–30

    Google Scholar 

  31. Xu HS, Wei C, Li CX, Deng ZG, Fan G, Li MT, Li XB (2014) Selective recovery of valuable metals from partial silicated sphalerite at elevated temperature with sulfuric acid solution. J Ind Eng Chem 20(4):1373–1381

    Article  CAS  Google Scholar 

  32. Yang ZH, Lin Q, Xia J, He Y, Liao GD, Ke Y (2013) Preparation and crystallization of glass-ceramics derived from iron-rich copper slag. J Alloy Compd 574:354–360

    Article  CAS  Google Scholar 

  33. Yang ZH, Lin Q, He Y, Tao HH, Ke Y, Liao GD (2013) Preparing of glass-ceramics and recovering of iron from copper slag. Appl Mech Mater 253(255):295–298

    Article  Google Scholar 

  34. Yang ZH, Lin Q, Lu SC, He Y, Liao GD, Ke Y (2014) Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag. Ceram Int 40:7297–7305

    Article  CAS  Google Scholar 

  35. Zhang HX (2013) Discussion on slow cooling process of copper smelting slag. China Nonferrous Metall 42(3):32–33

    Google Scholar 

  36. Zhou SW, Wei YG, Li B, Wang H (2019) Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant. J Clean Prod 217:423–431

    Article  CAS  Google Scholar 

  37. Zhou SW, Wei YG, Zhang SY, Li B, Wang H, Yang YD, Barati M (2019) Reduction of copper smelting slag using waste cooking oil. J Clean Prod 236:117668. https://doi.org/10.1016/j.clepro.2019.117668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to the financial support of the National Natural Science Foundation of China (Project Nos. 21978122 and 21566017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalong Liao.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Atsushi Shibayama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Ji, G., Shi, G. et al. A Study on the Selective Leaching of Valuable Metals and the Configuration of Iron Silicon Phases in Copper Smelting Slag by Oxidative Pressure Leaching. J. Sustain. Metall. 7, 1143–1153 (2021). https://doi.org/10.1007/s40831-021-00404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00404-9

Keywords

Navigation