Skip to main content
Log in

Iron Recovery from Red Mud Using Carbothermic Roasting with Addition of Alkaline Salts

  • Thematic Section: 3rd International Bauxite Residue Valorisation and Best Practices Conference
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Red mud is a hazardous waste of alumina production by the Bayer method, which can be used for recovery of valuable elements such as iron, aluminum, titanium, and scandium. In this study, carbothermic roasting of red mud followed by dry or wet magnetic separation was applied with addition of alkaline salts to enhance iron extraction. A comparative influence of the use of sodium and potassium carbonates and sulfates, as well as the effects of roasting temperature and amounts of the additives on iron recovery and the iron concentrate grade were studied experimentally on two industrial red mud samples. The general mechanism of the roasting process in the presence of alkali metals was proposed in terms of temperature and iron extraction. Influence of the grinding fineness of the roasted samples and magnetic field strength during wet magnetic separation on iron extraction was also studied. It was shown that the addition of sodium and potassium carbonates and sulfates during carbothermic roasting of red mud improves the magnetic separation of metallic iron. The composition and microstructure of the separation products were examined, and their possible application was discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Song Q, Li J, Zeng X (2015) Minimizing the increasing solid waste through zero waste strategy. J Clean Prod 104:199–210. https://doi.org/10.1016/j.jclepro.2014.08.027

    Article  Google Scholar 

  2. Millati R, Cahyono RB, Ariyanto T et al (2019) Agricultural, industrial, municipal, and forest wastes. In: Taherzadeh M, Bolton K, Wong J, Pandey A (eds) Sustainable resource recovery and zero waste approaches, 1st edn. Elsevier B.V, St. Louis, Missouri, USA, pp 1–22

    Google Scholar 

  3. Binnemans K, Jones PT, Manjón Fernández Á, Masaguer Torres V (2020) Hydrometallurgical processes for the recovery of metals from steel industry by-products: a critical review. J Sustain Metall 6:505–540. https://doi.org/10.1007/s40831-020-00306-2

    Article  Google Scholar 

  4. Rodriguez Rodriguez N, Machiels L, Onghena B et al (2020) Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents. RSC Adv 10:7328–7335. https://doi.org/10.1039/d0ra00277a

    Article  CAS  Google Scholar 

  5. Wang Z, Sohn I (2019) A review on reclamation and reutilization of ironmaking and steelmaking slags. J Sustain Metall 5:127–140. https://doi.org/10.1007/s40831-018-0201-5

    Article  Google Scholar 

  6. Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour Conserv Recycl 48:301–314. https://doi.org/10.1016/j.resconrec.2006.03.003

    Article  Google Scholar 

  7. Lèbre É, Corder GD, Golev A (2017) Sustainable practices in the management of mining waste: a focus on the mineral resource. Miner Eng 107:34–42. https://doi.org/10.1016/j.mineng.2016.12.004

    Article  CAS  Google Scholar 

  8. Zhang Z, Zhu Y, Yang T et al (2017) Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag. J Clean Prod 141:463–471. https://doi.org/10.1016/j.jclepro.2016.09.147

    Article  CAS  Google Scholar 

  9. Wiemes L, Pawlowsky U, Mymrin V (2017) Incorporation of industrial wastes as raw materials in brick’s formulation. J Clean Prod 142:69–77. https://doi.org/10.1016/j.jclepro.2016.06.174

    Article  CAS  Google Scholar 

  10. Seco A, Echeverría AM, Marcelino S et al (2020) Durability of polyester polymer concretes based on metallurgical wastes for the manufacture of construction and building products. Constr Build Mater 240: https://doi.org/10.1016/j.conbuildmat.2019.117907

    Article  CAS  Google Scholar 

  11. Oliveira A, Martins CI, Castro F (2018) Incorporation of metallurgical wastes as inorganic fillers in resins. In: Vilarinho C, Castro F, Lopes ML (eds) WASTES: solutions, treatments, opportunities II, 4th edn. CRC Press, London, pp 403–408

    Google Scholar 

  12. Montoya-Bautista CV, Avella E, Ramírez-Zamora RM, Schouwenaars R (2019) Metallurgical wastes employed as catalysts and photocatalysts for water treatment: a review. Sustainability 118:2470. https://doi.org/10.3390/su11092470

    Article  CAS  Google Scholar 

  13. Deus ACF, Bertani RM de A, Meirelles GC, et al (2019) The comprehensive utilization of steel slag in agricultural soils. In: Zhang YG (ed) Recovery and utilization of metallurgical solid waste. IntechOpen, pp 1–10. https://doi.org/10.5772/intechopen.81440

  14. Matinde E, Simate GS, Ndlovu S (2018) Mining and metallurgical wastes: a review of recycling and re-use practices. J South African Inst Min Metall 118:825–844

    CAS  Google Scholar 

  15. Sidrak YL (2001) Dynamic simulation and control of the Bayer process. A review. Ind Eng Chem Res 40:1146–1156. https://doi.org/10.1021/ie000522n

    Article  CAS  Google Scholar 

  16. Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition, recycling and utilisation of Bayer red mud. Resour Conserv Recycl 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.006

    Article  Google Scholar 

  17. Sutar H (2014) Progress of red mud utilization: an overview. Am Chem Sci J 4:255–279. https://doi.org/10.9734/acsj/2014/7258

    Article  Google Scholar 

  18. Pascual J, Corpas FA, López-Beceiro J et al (2009) Thermal characterization of a Spanish red mud. J Therm Anal Calorim 96:407–412. https://doi.org/10.1007/s10973-008-9230-9

    Article  CAS  Google Scholar 

  19. Reddy PS, Reddy NG, Serjun VZ et al (2021) Properties and assessment of applications of red mud (bauxite residue): current status and research needs. Waste Biomass Valoriz 12:1185–1217. https://doi.org/10.1007/s12649-020-01089-z

    Article  CAS  Google Scholar 

  20. Joyce PJ, Björklund A (2019) Using life cycle thinking to assess the sustainability benefits of complex valorization pathways for bauxite residue. J Sustain Metall 5:69–84. https://doi.org/10.1007/s40831-019-00209-x

    Article  Google Scholar 

  21. Joseph CG, Taufiq-Yap YH, Krishnan V, Li Puma G (2020) Application of modified red mud in environmentally-benign applications: a review paper. Environ Eng Res 25:795–806. https://doi.org/10.4491/eer.2019.374

    Article  Google Scholar 

  22. Zeng H, Lyu F, Sun W et al (2020) Progress on the industrial applications of red mud with a focus on China. Minerals 10:773. https://doi.org/10.3390/min10090773

    Article  Google Scholar 

  23. Das B, Mohanty K (2019) A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renew Energy 143:1791–1811. https://doi.org/10.1016/j.renene.2019.05.114

    Article  CAS  Google Scholar 

  24. Huangfu L, Abubakar A, Li C et al (2019) The utilization of red mud waste as industrial honeycomb catalyst for selective catalytic reduction of NO. R Soc Open Sci 6: https://doi.org/10.1098/rsos.191183

    Article  Google Scholar 

  25. Orescanin V, Nad K, Valkovic V et al (2001) Red mud and waste base: raw materials for coagulant production. J Trace Microprobe Tech 19:419–428. https://doi.org/10.1081/TMA-100105056

    Article  CAS  Google Scholar 

  26. Wang X, Zhang N, Zhang Y et al (2020) Multiple flocculant prepared with dealkalized red mud and fly ash: properties and characterization. J Water Process Eng 34: https://doi.org/10.1016/j.jwpe.2020.101173

    Article  Google Scholar 

  27. Li X, Ji M, Nghiem LD et al (2020) A novel red mud adsorbent for phosphorus and diclofenac removal from wastewater. J Mol Liq 303: https://doi.org/10.1016/j.molliq.2019.112286

    Article  CAS  Google Scholar 

  28. Deihimi N, Irannajad M, Rezai B (2018) Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal. J Environ Manage 206:266–275. https://doi.org/10.1016/j.jenvman.2017.10.037

    Article  CAS  Google Scholar 

  29. Wang Y, Zhang T, Zhang Y et al (2019) Transformation and characterization of cement clinker prepared from new structured red mud by sintering. JOM 71:2505–2512. https://doi.org/10.1007/s11837-019-03475-y

    Article  CAS  Google Scholar 

  30. Tang WC, Wang Z, Donne SW et al (2019) Influence of red mud on mechanical and durability performance of self-compacting concrete. J Hazard Mater 379: https://doi.org/10.1016/j.jhazmat.2019.120802

    Article  CAS  Google Scholar 

  31. Kim Y, Lee Y, Kim M, Park H (2019) Preparation of high porosity bricks by utilizing red mud and mine tailing. J Clean Prod 207:490–497. https://doi.org/10.1016/j.jclepro.2018.10.044

    Article  Google Scholar 

  32. Scribot C, Maherzi W, Benzerzour M et al (2018) A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production. Constr Build Mater 163:21–31. https://doi.org/10.1016/j.conbuildmat.2017.12.092

    Article  CAS  Google Scholar 

  33. Jitsangiam P, Nikraz H (2013) Sustainable use of coarse bauxite residue for alternative roadway construction materials. Aust J Civ Eng 11:1–12. https://doi.org/10.7158/14488353.2013.11463987

    Article  Google Scholar 

  34. Akcil A, Akhmadiyeva N, Abdulvaliyev R et al (2018) Overview on extraction and separation of rare earth elements from red mud: focus on scandium. Miner Process Extr Metall Rev 39:145–151. https://doi.org/10.1080/08827508.2017.1288116

    Article  CAS  Google Scholar 

  35. Binnemans K, Jones PT, Blanpain B et al (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38. https://doi.org/10.1016/j.jclepro.2015.02.089

    Article  CAS  Google Scholar 

  36. Xue SG, Wu YJ, Li YW et al (2019) Industrial wastes applications for alkalinity regulation in bauxite residue: a comprehensive review. J Cent South Univ 26:268–288. https://doi.org/10.1007/s11771-019-4000-3

    Article  CAS  Google Scholar 

  37. Zhang TA, Wang Y, Lu G et al (2018) Comprehensive utilization of red mud: current research status and a possible way forward for non-hazardous treatment. In: Martin O (ed) Light metals 2018. The minerals, metals & materials series. Springer, Cham, Switzerland, pp 135–141

    Chapter  Google Scholar 

  38. Dmitriev A (2019) The comprehensive utilisation of red mud utilisation in blast furnace. In: Recovery and utilization of metallurgical solid waste. IntechOpen, pp 1–10. https://doi.org/10.5772/intechopen.80087

  39. RUSAL technology for extracting scandium. https://rusal.ru/en/innovation/technology/scandium-oxide/. Accessed 5 March 2021

  40. Katyshev SF, Rukhlyadeva MS, Nikonenko EA et al (2015) Obtaining composite pigments from technogenic wastes from alumina production. Glas Ceram 72:303–305. https://doi.org/10.1007/s10717-015-9779-2

    Article  CAS  Google Scholar 

  41. Borra CR, Blanpain B, Pontikes Y et al (2016) Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J Sustain Metall 2:28–37. https://doi.org/10.1007/s40831-015-0026-4

    Article  Google Scholar 

  42. Valeev D, Zinoveev D, Kondratiev A et al (2020) Reductive smelting of neutralized red mud for iron recovery and produced pig iron for heat-resistant castings. Metals (Basel) 10:32. https://doi.org/10.3390/met10010032

    Article  CAS  Google Scholar 

  43. Pepper RA, Couperthwaite SJ, Millar GJ (2016) Comprehensive examination of acid leaching behaviour of mineral phases from red mud: recovery of Fe, Al, Ti, and Si. Miner Eng 99:8–18. https://doi.org/10.1016/j.mineng.2016.09.012

    Article  CAS  Google Scholar 

  44. Yang Y, Wang X, Wang M et al (2015) Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy 157:239–245. https://doi.org/10.1016/j.hydromet.2015.08.021

    Article  CAS  Google Scholar 

  45. Gao F, Zhang J, Deng X et al (2019) Comprehensive recovery of iron and aluminum from ordinary bayer red mud by reductive sintering-magnetic separation–digesting process. JOM 71:2936–2943. https://doi.org/10.1007/s11837-018-3311-4

    Article  CAS  Google Scholar 

  46. Eray S, Keskinkilic E, Varol M, et al (2020) A study on recovery of iron from red mud by solid state reduction followed by magnetic separation. In: Peng Z, Hwang JY, Downey JP, et al (eds) 11th International symposium on high-temperature metallurgical processing. Springer, Cham, Switzerland, pp 393–403. https://doi.org/10.1007/978-3-030-36540-0_35

  47. Fofana M, Kmet S, Jakabsky S, et al (1995) Treatment of red mud from alumina production by high-intensity magnetic separation. Magn Electr Sep 6:243–251. https://doi.org/10.1155/1995/60564

  48. Li Y, Wang J, Wang X et al (2011) Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation. Phys C Supercond Appl 471:91–96. https://doi.org/10.1016/j.physc.2010.12.003

    Article  CAS  Google Scholar 

  49. Cardenia C, Balomenos E, Panias D (2019) Iron recovery from bauxite residue through reductive roasting and wet magnetic separation. J Sustain Metall 5:9–19. https://doi.org/10.1007/s40831-018-0181-5

    Article  Google Scholar 

  50. Rao M, Zhuang J, Li G, et al (2016) Iron recovery from red mud by reduction roasting-magnetic separation. In: Sadler BA (ed) Light metals 2013. The minerals, metals & materials series. Springer, Cham, Switzerland, pp 125–130. https://doi.org/10.1007/978-3-319-65136-1_22

  51. Chun TJ, Zhu DQ, Pan J, He Z (2014) Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Can Metall Q 53:183–189. https://doi.org/10.1179/1879139513y.0000000114

    Article  CAS  Google Scholar 

  52. Zhu DQ, Chun TJ, Pan J, He Z (2012) Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J Iron Steel Res Int 19:1–5. https://doi.org/10.1016/S1006-706X(12)60131-9

    Article  Google Scholar 

  53. Li G, Liu M, Rao M et al (2014) Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J Hazard Mater 280:774–780. https://doi.org/10.1016/j.jhazmat.2014.09.005

    Article  CAS  Google Scholar 

  54. Grudinskii PI, Dyubanov VG, Zinoveev DV, Zheleznyi MV (2018) Solid-phase reduction and iron grain growth in red mud in the presence of alkali metal salts. Russ Metall 2018:1020–1026. https://doi.org/10.1134/S0036029518110071

    Article  Google Scholar 

  55. Zinoveev D, Grudinsky P, Zakunov A et al (2019) Influence of Na2CO3 and K2CO3 addition on iron grain growth during carbothermic reduction of red mud. Metals (Basel) 9:1313. https://doi.org/10.3390/met9121313

    Article  CAS  Google Scholar 

  56. Grudinsky P, Zinoveev D, Pankratov D et al (2020) Influence of sodium sulfate addition on iron grain growth during carbothermic roasting of red mud samples with different basicity. Metals (Basel) 10:1571. https://doi.org/10.3390/met10121571

    Article  CAS  Google Scholar 

  57. Shiryaeva EV, Podgorodetskiy GS, Malyscheva TY, et al (2014) Influence of low alkaline red mud on the properties and microstructure of the agglomerates from the charge materials JSC “Ural steel.” Izv Ferr Metall 57:14–19. https://doi.org/10.17073/0368-0797-2014-1-14-19

  58. Bale CW, Bélisle E, Chartrand P et al (2016) Reprint of: FactSage thermochemical software and databases, 2010–2016. Calphad 55:1–19. https://doi.org/10.1016/j.calphad.2016.07.004

    Article  CAS  Google Scholar 

  59. Tao J, Zheng L (2009) Determination of metallic iron in direct reduced iron by potassium dichromate titration after decomposition of sample by ferric chloride. Metall Anal 29:65–68

    CAS  Google Scholar 

  60. Parirenyatwa S, Escudero-Castejon L, Sanchez-Segado S et al (2016) Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy 165:213–226. https://doi.org/10.1016/j.hydromet.2015.08.002

    Article  CAS  Google Scholar 

  61. Peckner D, Bernstein IM (1977) Handbook of stainless steels, 1st edn. McGraw-Hill, New York, USA

    Google Scholar 

  62. Vind J, Malfliet A, Bonomi C et al (2018) Modes of occurrences of scandium in Greek bauxite and bauxite residue. Miner Eng 123:35–48. https://doi.org/10.1016/j.mineng.2018.04.025

    Article  CAS  Google Scholar 

  63. Yu W, Sun T, Kou J et al (2013) The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int 53:427–433. https://doi.org/10.2355/isijinternational.53.427

    Article  CAS  Google Scholar 

  64. Bai S, Wen S, Liu D et al (2012) Beneficiation of high phosphorus limonite ore by sodium-carbonate-added carbothermic reduction. ISIJ Int 52:1757–1763. https://doi.org/10.2355/isijinternational.52.1757

    Article  CAS  Google Scholar 

  65. Oleinik VO, Ablets EV, Panko AV, et al (2014) Influence of nanostructures on processes of solid-phase reduction and purification of ferrioxide—silicate materials. Met Noveishie Tekhnol 36:779–792. https://doi.org/10.15407/mfint.36.06.0779

  66. Liu W, Yang J, Xiao B (2009) Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J Hazard Mater 161:474–478. https://doi.org/10.1016/j.jhazmat.2008.03.122

    Article  CAS  Google Scholar 

  67. Hertel T, Pontikes Y (2020) Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud)—putting things in perspective. J Clean Prod 258: https://doi.org/10.1016/j.jclepro.2020.120610

    Article  CAS  Google Scholar 

  68. Hertel T, Van den Bulck A, Blanpain B, Pontikes Y (2020) An integrated process for iron recovery and binder production from bauxite residue (red mud). Mater Lett 264: https://doi.org/10.1016/j.matlet.2019.127273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the Chemical Analytical Laboratory of the JSC “Design & Survey and Research & Development Institute of Industrial Technology” for chemical analysis.

Funding

The present study was funded by RFBR according to the research project No. 18-29-24186. Access to the electronic database of scientific publications was provided within Russian state assignment No. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Grudinsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Yiannis Pontikes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grudinsky, P., Zinoveev, D., Yurtaeva, A. et al. Iron Recovery from Red Mud Using Carbothermic Roasting with Addition of Alkaline Salts. J. Sustain. Metall. 7, 858–873 (2021). https://doi.org/10.1007/s40831-021-00400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00400-z

Keywords

Navigation