Jiles D (1998) Introduction to magnetism and magnetic materials, 2nd edn. Chapman & Hall, New York
Google Scholar
Rademaker JH, Kleijn R, Yang Y (2013) Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Environ Sci Technol 47:10129–10136. doi:10.1021/es305007w
CAS
Article
Google Scholar
Binnemans K, Jones PT, Van Acker K, Blanpain B, Mishra B, Apelian D (2013) Rare-earth economics: the balance problem. JOM 65:846–848. doi:10.1007/s11837-013-0639-7
Article
Google Scholar
Binnemans K, Jones PT (2015) Rare earths and the balance problem. J Sustain Metall 1:29–38. doi:10.1007/s40831-014-0005-1
Article
Google Scholar
Elshkaki A, Graedel TE (2014) Dysprosium, the balance problem, and wind power technology. Appl Energy 136:548–559. doi:10.1016/j.apenergy.2014.09.064
Article
Google Scholar
Schüler D, Buchert M, Liu R, Dittrich S, Merz C (2011) Study on rare earths and their recycling: final report for the Greens/EFA Group in the European Parliament. Öko-Institute e.V, Darmstad
Google Scholar
Moss RL, Tzimas E, Kara H, Willis P, Kooroshy J (2011) Critical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low carbon energy technologies. Eur Comm JRC Inst Energy Transp. doi:10.2790/35716
Article
Google Scholar
Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. doi:10.1016/j.jclepro.2012.12.037
CAS
Article
Google Scholar
Tanaka M, Oki T, Koyama K, Narita H, Oishi T (2013) Chapter 255—recycling of rare earths from scrap. In: Jean-Claude GB, Vitalij KP (eds) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam
Google Scholar
Takeda O, Okabe TH (2014) Current status on resource and recycling technology for rare earths. Metall Mater Trans E 1A:160–173. doi:10.1007/s40553-014-0016-7
CAS
Article
Google Scholar
Firdaus M, Rhamdhani MA, Durandet Y, Rankin WJ, McGregor K (2016) Review of high-temperature recovery of rare earth (Nd/Dy) from magnet waste. J Sustain Metall. doi:10.1007/s40831-016-0045-9
Article
Google Scholar
Zakotnik M, Harris IR, Williams AJ (2008) Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process. J Alloys Compd 450:525–531. doi:10.1016/j.jallcom.2007.01.134
CAS
Article
Google Scholar
Walton A, Williams A (2011) Rare earth recovery. Mater World 19:24–26
Google Scholar
Uda T (2002) Recovery of rare earths from magnet sludge by FeCl2. Mater Trans 43:55–62
CAS
Article
Google Scholar
Itoh M, Miura K, Machida KI (2009) Novel rare earth recovery process on Nd-FeB magnet scrap by selective chlorination using NH4Cl. J Alloys Compd 477:484–487. doi:10.1016/j.jallcom.2008.10.036
CAS
Article
Google Scholar
Okabe TH, Takeda O, Fukuda K, Umetsu Y (2003) Direct extraction and recovery of neodymium metals from magnet scrap. Mater Trans 44:798–801
CAS
Article
Google Scholar
Lyman JW, Palmer GR (1993) Recycling of rare earths and iron from NdFeB magnet scrap. High Temp Mater Process 11(1–4):175–187. doi:10.1515/HTMP.1993.11.1-4.175
CAS
Article
Google Scholar
Wellens S, Thijs B, Binnemans K (2012) An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem 14:1657–1665. doi:10.1039/C2GC35246J
CAS
Article
Google Scholar
Saito T, Sato H, Ozawa S, Yu J, Motegi T (2003) The extraction of Nd from waste NdFeB alloys by the glass slag method. J Alloys and Compd 353:189–193. doi:10.1016/S0925-8388(02)01202-1
CAS
Article
Google Scholar
USGS (2010-2016) Minerals yearbook, rare earths. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/index.html#myb. Accessed 8 May 2016
Goonan T G (2011) Rare earth elements-end use and recyclability. USGS Scientific Investigations Report 2011–5094. https://pubs.usgs.gov/sir/2011/5094/pdf/sir2011-5094.pdf. Accessed 8 May 2016
British Geological Survey (BGS) (2010) rare earth elements. 2010. http://www.MineralsUK.com. Accessed 8 May 2016
Shaw S, Constantinides S (2012) Permanent magnets: the demand for rare earths. Presentation in: 8th International Rare Earths Conference. 13–15 November 2012, Hong Kong. http://roskill.com/wp/wp-content/uploads/2014/11/download-roskills-paper-on-permanent-magnets-the-demand-for-rare-earths.attachment1.pdf. Accessed 8 May 2016
Sagawa M, Fujimura S, Yamamoto H, Matsuura Y, Hiraga K (1984) Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans Magn 20(5):1584–1589. doi:10.1109/TMAG.1984.1063214
Article
Google Scholar
Alonso E, Sherman AM, Wallington TJ, Everson MP, Field R, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414. doi:10.1021/es203518d
CAS
Article
Google Scholar
Kozawa S (2011) Trends and problems in research of permanent magnets for motors-addressing scarcity problem of rare earth elements. Sci Technol Trends: Quart Rev 38:40–54 http://data.nistep.go.jp/dspace/bitstream/11035/2854/1/NISTEP-STT038E−40.pdf. Accessed 8 May 2016
Benecki WT (2013) The permanent magnet market 2015. Presentation in: magnetics 2013 Conference. February 8, 2013 Orlando. http://www.waltbenecki.com/uploads/Magnetics_2013_Benecki_Presentation.pdf. Accessed 8 May 2016
UNEP (2013) Metal recycling: opportunities, limits, infrastructure, contributors. In: Reuter MA, Hudson C, van Schaik A, Heiskanen K, Meskers C, Hagelüken CA (eds). Report of the Working Group on the Global Metal Flows to the International Resource Panel
Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (review). Adv Mater 23:821–842. doi:10.1002/adma.201002180
CAS
Article
Google Scholar
Kuz’min MD, Skokov KP, Jian H, Radulov I, Gutfleisch O (2014) Towards high-performance permanent magnets without rare earths. J Phys 26:5. doi:10.1088/0953-8984/26/6/064205
CAS
Article
Google Scholar
Sawatzki S, Dirks A, Dirba I, Schultz Land Gutfleisch O (2014) Coercivity enhancement in hot-pressed Nd-Fe-B permanent magnets by low melting eutectics. J Appl Phys 115:17A705. doi:10.1063/1.4859097
CAS
Article
Google Scholar
Edström A et al (2015) Effect of doping by 5d elements on magnetic properties of (Fe1 − xCox)2B alloys. Phys Rev B 92:174413. doi:10.1103/PhysRevB.92.174413
CAS
Article
Google Scholar
Gutfleisch O (2000) Controlling the properties of high density permanent magnetic materials (TOPICAL REVIEW). J Phys D 33:R157–R172. doi:10.1088/0022-3727/33/17/201
CAS
Article
Google Scholar
Gutfleisch O, Harris IR (1996) Fundamental and practical aspects of the HDDR process. J Phys D 29:2255–2265. doi:10.1088/0022-3727/29/9/006
CAS
Article
Google Scholar
Woodcock TG, Zhang Y, Hrkac G, Ciuta G, Dempsey NM, Schrefl T, Gutfleisch O, Givord D (2012) Understanding microstructure and coercivity in high performance NdFeB-based magnets (viewpoint paper). Scripta Mat 67:536–541
CAS
Article
Google Scholar
Gutfleisch O, Khlopkov K, Teresiak A, Müller KH, Drazic G, Mishima C, Honkura Y (2003) Memory of texture during HDDR processing of NdFeB. IEEE Trans Magn 39:2926–2931. doi:10.1109/TMAG.2003.815749
CAS
Article
Google Scholar
Honkura Y, Mishima C, Hamada N, Gutfleisch O (2005) Texture memory effect of Nd-Fe-B during hydrogen treatment. J Magn Magn Mat 290–291(P2):1282–1285. doi:10.1016/j.jmmm.2004.11.423
CAS
Article
Google Scholar
Gutfleisch O, Güth K, Woodcock TG, Schultz L (2013) Recycling used Nd-Fe-B sintered magnets via a hydrogen-based route to produce anisotropic, resin bonded magnets. Adv Energy Mater 3:151–155. doi:10.1002/aenm.201200337
CAS
Article
Google Scholar
Sheridan RS, Sillitoe R, Zakotnik M, Williams AJ (2012) Anisotropic powder from sintered NdFeB magnets by the HDDR processing route. J Magn Magn Mater 324(1):63–67. doi:10.1016/j.jmmm.2011.07.043
CAS
Article
Google Scholar
Sheridan RS, Williams AJ, Harris IR, Walton A (2014) Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets. J Magn Magn Mater 350:114–118. doi:10.1016/j.jmmm.2013.09.042
CAS
Article
Google Scholar
Walton A, Han Y, Rowson NA, Speight JD, Mann VSJ, Sheridan RS, Bradshaw A, Harris IR, Williams AJ (2015) The use of hydrogen to separate and recycle neodymium-iron-boron-type magnets from electronic waste. J Clean Prod 104:236–241. doi:10.1016/j.jclepro.2015.05.033
CAS
Article
Google Scholar
Dirba I, Sawatzki S, Gutfleisch O (2014) Net-shape and Crack-Free production of Nd-Fe-B magnets by hot deformation. J Alloys Compd 589:301–306. doi:10.1016/j.jallcom.2013.11.188
CAS
Article
Google Scholar
Gutfleisch O, Kirchner A, Grünberger W, Hinz D, Nagel H, Thompson P, Chapman JN, Müller KH, Harris IR, Schultz L (1998) Textured NdFeB HDDR magnets produced by die-upsetting and backward extrusion. J Phys D 31:807–811. doi:10.1088/0022-3727/31/7/009
CAS
Article
Google Scholar
El-Aziz AM, Kirchner A, Gutfleisch O, Gebert A, Schultz L (2000) Investigations of the corrosion behaviour of nanocrystalline Nd-Fe-B hot pressed magnets. J Alloys Comd 311:299–304. doi:10.1016/S0925-8388(00)01112-9
CAS
Article
Google Scholar
Constantinides S (2016) Permanent magnets in a changing world market. Magnetics Magazine: Business and Technology (Spring 2016, Feb 26, 2016). http://www.magneticsmagazine.com/main/articles/permanent-magnets-in-a-changing-world-market. Accessed 8 May 2016
Bandara HMD, Darcy JW, Apelian D, Emmert MH (2014) Value analysis of neodymium content in shredder feed: towards enabling the feasibility of rare earth magnet recycling. Environ Sci Technol 48:6553–6560. doi:10.1021/es405104k
CAS
Article
Google Scholar
Constantinides S (2012) The Demand for Rare Earth Materials in Permanent Magnets. Presentation at the 51st annual conference of metallurgists (COM 2012), Sept. 30–Oct. 3, 2012. Niagara Falls. http://www.arnoldmagnetics.com/Portals/0/Files/Tech%20Library/Technical%20Publications/Tech%20Papers/Demand%20for%20rare%20earth%20materials%20in%20permanent%20magnets%20-%20Constantinides%20-%20COM%20-%202012%20psn%20hi-res.pdf?ver=2015-09-21-101252-140. Accessed 17 Sept 2016
OICA (2016) Sales of new vehicles 2005–2015. http://www.oica.net/category/sales-statistics. Accessed 23 May 2016
Du X, Graedel TE (2011) Global rare earth in-use stocks in NdFeB permanent magnets. J Ind Ecol 15(6):836–843. doi:10.1111/j.1530-9290.2011.00362.x
CAS
Article
Google Scholar
Guyonnet D, Planchon M, Rollat A, Escalon V, Tuduri J, Charles N, Vaxelaire S, Dubois D, Fargier H (2015) Material flow analysis applied to rare earth elements in Europe. J Clean Prod 107:215–228. doi:10.1016/j.jclepro.2015.04.123
CAS
Article
Google Scholar
Habib K, Wenzel H (2014) Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J Clean Prod 84:348–359. doi:10.1016/j.jclepro.2014.04.035
CAS
Article
Google Scholar
Bandara HMD, Mantell MA, Darcy JW (2015) Closing the lifecycle of rare earth magnets: discovery of neodymium in slag from steel mills. Energy Technol 3:118–120. doi:10.1002/ente.201402162
CAS
Article
Google Scholar
Habib K, Parajuly K, Wenzel H (2015) Tracking the flow of resources in electronic waste - the case of end-of-life computer hard disk drives. Environ Sci Technol 49(20):12441–12449. doi:10.1021/acs.est.5b02264
CAS
Article
Google Scholar
Pålsson BI, Wanhainen C, Yurramendi L, Guarde D, Egia A (2015) Cryo-grinding of waste from electronic and electric equipment, implications for recovery of rare earth elements. In: Physical Separation’15, Falmouth, Cornwall, 26 pp
Ueberschaar M, Rotter VS (2015) Enabling the recycling of rare earth elements through product design and trend analyses of hard disk drives. J Mater Cycles Waste Manag 17(2):266–281. doi:10.1007/s10163-014-0347-6
CAS
Article
Google Scholar
Baba K, Nemoto T, Maruyama H, Taketani N, Itayagoshi K, Hirose Y (2010) Hitachi’s involvement in material resource recycling. Hitachi Rev 59(4): 180–187. www.hitachi.com/rev/pdf/2010/r2010_04_110.pdf. Accessed 8 May 2016
Baba K, Hiroshige Y, Nemoto T (2013) Rare-earth magnet recycling. Hitachi Rev 62(8): 452–455. www.hitachi.com/rev/pdf/2013/r2013_08_105.pdf. Accessed 8 May 2016
Abrahami ST (2012) Rare-earths recovery from post-consumer HDD scrap. Master thesis. Department of Materials Science and Engineering, TU Delft
Abrahami ST, Xiao Y, Yang Y (2015) Rare-earth elements recovery from post-consumer hard-disc drives. Miner Process Extr Metall (Trans. Inst. Min. Metall. C) 124(2):106–115. doi:10.1179/1743285514Y.0000000084
CAS
Article
Google Scholar
Walton A, Campbell A, Sheridan RS, Mann VSJ, Speight JD, Harris IR, Guerrero B, Bagan C, Conesa A, Schaller V (2014) Recycling of rare earth magnets. In: Proceeding od the 23rd international workshop on rare earth magnets and their applications, Annapolis, pp 26–30
Zakotnik M, Harris IR, Wiliams AJ (2009) Multiple recycling of NdFeB-type sintered magnets. J Alloys Compd 469:314–321. doi:10.1016/j.jallcom.2008.01.114
CAS
Article
Google Scholar
Walton A, Han Y, Speight JD, Harris IR, Williams AJ (2012) The use of hydrogen to extract and re-process NdFeB magnets from electronic waste. In: Proceeding of the 22nd international Workshop on Rare Earth Permanent Magnets and Their Applications. Nagasaki, pp 11–13
Högberg S, Bendixen FB, Mijatovic N, Jensen BB, Holbøll J (2015) Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets. In: Proceeding of the IEEE international electric machines and drives conference. pp 1242–1246
Meakin JP, Speight JD, Sheridan RS, Bradshaw A, Harris IR, Williams AJ, Walton A (2016) 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions. Appl Surf Sci 378:540–544. doi:10.1016/j.apsusc.2016.03.182
CAS
Article
Google Scholar
Herraiz E, Degri M, Bradshaw A, Sheridan RS, Mann VSJ, Harris IR, Walton A (2016) Recycling of rare earth magnets by hydrogen processing and re-sintering. In: 24th international workshop on rare earth permanent magnet and their applications, Darmstadt
Mottram RS, Kianvash A, Harris IR (1999) The use of metal hydrides in powder blending for the production of NdFeB-type magnets. J Alloys Compd 283:282–288. doi:10.1016/S0925-8388(98)00910-4
CAS
Article
Google Scholar
Zakotnik M, Tudor CO (2015) Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materials. Waste Manag 44:48–54. doi:10.1016/j.wasman.2015.07.041
CAS
Article
Google Scholar
Mann VSJ, Škulj I, Walton A (2016) Production of Sintered magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt
Kim AS, Kim DH, Namkung S, Jang TS, Lee DH, Kwon HW, Hwang DH (2004) HDDR processing of magnet scrap. IEEE Trans Magn 40:2877–2879
CAS
Article
Google Scholar
Zakotnik M, Williams AJ, Harris IR (2004) Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing or HDDR processes. In: Proceedings of 18th international Workshop on Rare Earth Permanent Magnets & Their Applications
Li X, Yue M, Zakotnik M, Liu W, Zhang D, Zuo T (2015) Regeneration of waste sintered Nd-Fe-B magnets to fabricate anisotropic bonded magnets. J Rare Earths 33:736–739. doi:10.1016/S1002-0721(14)60478-6
CAS
Article
Google Scholar
Farr M, Sitarz P, Saje B, Sheridan RS, Bradshaw A, Mann VSJ, Harris IR, Walton A (2016) Production of injection moulded NdFeB magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Magnets and their Applications. Darmstadt
Farr M, Sitarz P, Saje B, Sheridan RS, Bradshaw A, Mann VSJ, Harris IR, Walton A (2016) NdFeB magnets from recycled hard disk drive voice coil magnets. 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt
Itoh M, Masuda M, Suzuki S, Machida K-I (2004) Recycling of rare earth sintered magnets as isotropic bonded magnets by melt-spinning. J Alloys Compd 374:393–396. doi:10.1016/j.jallcom.2003.11.030
CAS
Article
Google Scholar
Bounds C (1994) The recycle of sintered magnet swarf. In: Liddell KC et al (eds) Metals and materials waste reduction, recovery and mediation. TMS, Warrendale, PA, pp 173–186
Google Scholar
Bandara HMD, Field KD, Emmert MH (2016) Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem 18:753–759. doi:10.1039/C5GC01255D
CAS
Article
Google Scholar
Yoon HS, Kim CJ, Lee JY, Kim SD, Lee JC (2003) Separation of neodymium from NdFeB permanent magnet scrap. J Korean Inst Resour Recycl 12(6):57–63. doi:10.7844/kirr
CAS
Article
Google Scholar
Ellis TW, Schmidt FA, Jones LL (1994) Methods and opportunities in the recycling of rare earth based materials. In: Liddell KC et al (eds) Metals and materials waste reduction, recovery, and remediation. TMS, Warrendale, PA, pp 199–206
Google Scholar
Lee JC, Kim WB, Jeong J, Yoon IJ (1998) Extraction of neodymium from Nd-Fe-B magnet scraps by sulfuric acid. J Korean Inst Met Mater 36(6):967–972
CAS
Google Scholar
Koyama K, Kitajima A, Tanaka M (2009) Selective leaching of rare-earth elements from an Nd-Fe-B magnet. Kidorui (Rare Earths) 54:36–37
CAS
Google Scholar
Koyama K, Tanaka M (2011) In: Machida K (ed) The latest technology trend and resource strategy of rare earths. CMC Press, Tokyo, pp 127–131
Google Scholar
Itakura T, Sasai R, Itoh H (2006) Resource recovery from Nd-Fe-B sintered magnet by hydrothermal treatment. J Alloys Compd 408–412:1382–1385. doi:10.1016/j.jallcom.2005.04.088
CAS
Article
Google Scholar
Prakash V, Sun ZHI, Sietsma J, Yang Y (2016) Simultaneous electrochemical recovery of rare earth elements and iron from magnet scrap: a theoretical analysis (Chap. 22). In: De Lima IB, Filho WL (eds) Rare earths industry technological, economic, and environmental implications. Elsevier, Amsterdam, pp 335–346
Chapter
Google Scholar
Voncken JHL (2016) The rare earth elements, an introduction. SpringerNature, Dordrecht
Book
Google Scholar
Cotton S (2006) Lanthanide and actinide chemistry. John Wiley & Sons Ltd, West Sussex
Book
Google Scholar
Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196. doi:10.1016/S0016-7037(01)00849-3
CAS
Article
Google Scholar
Kraikaew J, Srinuttrakul W, Chayavadhanakur C (2005) Solvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in kerosene. J Metals Mater Miner 15(2):89–95
CAS
Google Scholar
Nash KL, Choppin GR (1995) Separation of f elements. Springer Science + Business Media. (eBook). doi 10.1007/978-1-4899-1406-4
Mohammadi M, Forsberg K, Kloo L, Martinez De La Cruz J, Rasmuson A (2015) Separation of ND(III), DY(III) and Y(III) by solvent extraction using D2EHPA and EHEHPA. Hydrometallurgy 156:215–224. doi:10.1016/j.hydromet.2015.05.004
CAS
Article
Google Scholar
Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earths. CRC Press, London
Google Scholar
Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28. doi:10.1016/j.mineng.2013.10.021
CAS
Article
Google Scholar
Yoon HS, Kim CJ, Chung KW, Kim SD, Lee JY, Kumar JR (2016) Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processing. Hydrometallurgy. doi:10.1016/j.hydromet.2016.01.028
Article
Google Scholar
Banda R, Jeon H, Lee M (2012) Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants. Sep Purif Technol 98:481–487. doi:10.1016/j.seppur.2012.08.015
CAS
Article
Google Scholar
Liu Y, Jeon HS, Lee MS (2014) Solvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractants. Hydrometallurgy 150:61–67. doi:10.1016/j.hydromet.2014.09.015
CAS
Article
Google Scholar
Abreu RD, Morais CA (2014) Study on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagents. Miner Eng 61:82–87. doi:10.1016/j.mineng.2014.03.015
CAS
Article
Google Scholar
Elwert T, Goldmann D, Römer F (2014) Separation of lanthanides from NdFeB magnets on a mixer-settler plant with PC-88A. World Metall 67:287–296
CAS
Google Scholar
Zhu ZX, Sasaki Y, Suzuki H, Suzuki S, Kimura T (2004) Cumulative study on solvent extraction of elements by N, N, N’, N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal Chim Acta 527:163–168. doi:10.1016/j.aca.2004.09.023
CAS
Article
Google Scholar
Dam HH, Reinhoudt DN, Verboom W (2007) Multicoordinate ligands for actinide/lanthanide separations. Chem Soc Rev 36:367–377. doi:10.1039/B603847F
CAS
Article
Google Scholar
Modolo G, Vijgen H, Serrano-Purroy D, Christiansen B, Malmbeck R, Sorel C, Baron P (2007) DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate. Sep Sci Technol 42:439–452. doi:10.1080/01496390601120763
CAS
Article
Google Scholar
Sinkov SI, Rapko BM, Lumetta GJ, Hay BP, Hutchison JE, Parks BW (2004) Bicyclic and acyclic diamides: comparison of their aqueous phase binding constants with Nd(III), Am(III), Pu(IV), Np(V), Pu(VI), and U(VI). Inorg Chem 43:8404–8413. doi:10.1021/ic049377m
CAS
Article
Google Scholar
Tyumentsev MS, Foreman MRS, Ekberg C, Matyskin AV, Retegan T, Steenari B-M (2016) The solvent extraction of rare earth elements from nitrate media with novel polyamides containing malonamide groups. Hydrometallurgy 164:24–30. doi:10.1016/j.hydromet.2016.05.007
CAS
Article
Google Scholar
Kim D, Powell LE, Delmau LH, Peterson ES, Herchenroeder J, Bhave RR (2015) Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ Sci Technol 49(16):9452–9459. doi:10.1021/acs.est.5b01306
CAS
Article
Google Scholar
Nakashima K, Kubota F, Maruyama T, Goto M (2003) Ionic liquids as a novel solvent for lanthanide extraction. Anal Sci 19(8):1097–1098. doi:10.2116/analsci.19.1097
CAS
Article
Google Scholar
Kubota F, Baba Y, Goto M (2012) Application of ionic liquids for the separation of rare earth metals. Solvent Extr Res Dev, Jpn 19:17–28. doi:10.1252/jcej.11we005
CAS
Article
Google Scholar
Baba Y, Kubota F, Kamiya N et al (2011) Recent advances in extraction and separation of rare-earth metals using ionic liquids. J Chem Eng Jpn 44(10):679–685. doi:10.1252/jcej.10we279
CAS
Article
Google Scholar
Park J, Jung Y, Kusumah P, Lee J, Kwon K, Lee CK (2014) Application of ionic liquids in hydrometallurgy. Int J Mol Sci 15:15320–15343. doi:10.3390/ijms150915320
CAS
Article
Google Scholar
Makanyire T, Sanchez-Segado S, Jha A (2016) Separation and recovery of critical metal ions using ionic liquids. Adv Manuf 4(1):33–46. doi:10.1007/s40436-015-0132-3
CAS
Article
Google Scholar
Yoon SJ, Lee JG, Tajima H, Yamasaki A, Kiyono F, Nakazato T, Tao H (2010) Extraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with room-temperature ionic liquids. J Ind Eng Chem 16(3):350–354. doi:10.1016/j.jiec.2009.09.063
CAS
Article
Google Scholar
Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane system. Solvent Extr Ion Exch 19:91–103. doi:10.1081/SEI-100001376
CAS
Article
Google Scholar
Naganawa H, Shimojo K, Mitamura H, Sugo Y, Noro J, Goto M (2007) A New, “green” extractant of the diglycol amic acid type for lanthanides. Solvent Extr Res Dev, Jpn 14:151–159
CAS
Google Scholar
Shimojo K, Naganawa H, Noro J, Kubota F, Goto M (2007) Extraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligand. Anal Sci 23(12):1427–1430. doi:10.2116/analsci.23.1427
CAS
Article
Google Scholar
Kikuchi Y, Matsumiya M, Kawakami S (2014) Extraction of rare earth ions from Nd-Fe-B magnet wastes with TBP in tricaprylmethylammonium nitrate. Solvent Extr Res Dev, Jpn 21:137–145. doi:10.15261/serdj.21.137
CAS
Article
Google Scholar
Vander Hoogerstraete T, Wellens S, Verachtert K, Binnemans K (2013) Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem 15:919–927. doi:10.1039/C3GC40198G
CAS
Article
Google Scholar
Vander Hoogerstraete T, Binnemans K (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem 16:1594–1606. doi:10.1039/C3GC41577E
CAS
Article
Google Scholar
Vander Hoogerstraete T, Blanpain B, Van Gerven T, Binnemans K (2014) From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Adv 4:64099–64111. doi:10.1039/C4RA13787F
CAS
Article
Google Scholar
Riano S, Binnemans K (2015) Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem 17:2931–2942. doi:10.1039/C5GC00230C
CAS
Article
Google Scholar
Dupont D, Binnemans K (2015) Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2 N]. Green Chem 17:2150–2163. doi:10.1039/C5GC00155B
CAS
Article
Google Scholar
Okabe TH and Shirayama S (2011) Method and apparatus for recovery of rare earth element, US Patent Application Publication: US2011/0023660A1
Murase K, Machida K, Adachi G (1995) Recovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transport. J Alloys Compd 217:218–225. doi:10.1016/0925-8388(94)01316-A
CAS
Article
Google Scholar
Önal MAR, Borra CR, Guo M, Blanpain B, Van Gerven T (2015) Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching. J Sustain Metall 1:199–215. doi:10.1007/s40831-015-0021-9
Article
Google Scholar
Ellis TW, Schmidt FA (1995) Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction. U.S. Patent 5,437,709
Xu Y, Chumbley LS, Laabs FC (2000) Liquid metal extraction of Nd from NdFeB magnet scrap. J Mater Res 15:2296–2304. doi:10.1557/JMR.2000.0330
CAS
Article
Google Scholar
Takeda O, Okabe TH, Umetsu Y (2006) Recovery of neodymium from a mixture of magnet scrap and other scrap. J Alloys Compd 408–412:387–390. doi:10.1016/j.jallcom.2005.04.094
CAS
Article
Google Scholar
Takeda O, Okabe TH, Umetsu Y (2004) Phase equilibrium of the system Ag-Fe-Nd, and Nd extraction from magnet scraps using molten silver. J Alloys Compd 379:305–313. doi:10.1016/j.jallcom.2004.02.038
CAS
Article
Google Scholar
Moore M, Gebert A, Stoica M et al (2015) A route for recycling Nd from Nd-Fe-B magnets using Cu melts. J Alloys Compd 647:997–1006. doi:10.1016/j.jallcom.2015.05.238
CAS
Article
Google Scholar
Hua Z, Wang J, Wang L, Zhao Z, Li X, Xiao Y, Yang Y (2014) Selective extraction of rare earth elements from NdFeB scrap by molten chlorides. ACS Sustain Chem Eng 2:2536–2543. doi:10.1021/sc5004456
CAS
Article
Google Scholar
Tanaka M, Sato Y, Huang Y, Narita H, Koyama K (2009) In: Proceedings of the 10th international symposium on east asian resources recycling technology (EARTH2009). The Korean Institute of Resources Recycling, Seoul, pp 200–203
Hua ZS, Wang L, Wang J, Xiao YP, Yang YX, Zhao Z, Liu MJ (2015) Extraction of rare earth elements from NdFeB scrap by AlF3–NaF melts. Mater Sci Technol 31:1007–1010. doi:10.1179/1743284714Y.0000000672
CAS
Article
Google Scholar
Saito T, Sato H, Motegi T (2006) Recovery of rare earths from sludges containing rare-earth elements. J Alloys Compd 425:145–147. doi:10.1016/j.jallcom.2006.01.011
CAS
Article
Google Scholar
Yang Y, Abrahami ST, Xiao Y (2013) Recovery of rare earth elements from EOL permanent magnets with molten slag extraction. In: Proceedings of the 3rd international slag valorisation symposium. Leuven, pp 249–252. http://www.slag-valorisation-symposium.eu/2013/images/papers/ps3_1_Yang.pdf. Accessed 8 May 2016
Bian Y, Guo S, Jiang L, Liu J, Tang K, Ding W (2016) Recovery of rare earth elements from NdFeB magnet by VIM–HMS method. ACS Sustain Chem Eng 4:810–818. doi:10.1021/acssuschemeng.5b00852
CAS
Article
Google Scholar
Jakobsson LK, Kennedy MW, Aune RE, Tranell G (2016) Recovery of rare earth elements from the ferrous fraction of electronic waste. In: Kirchain RE et al (eds) REWAS 2016-towards materials resource sustainability. TMS, Warrendale, PA, pp 89–93
Chapter
Google Scholar
Kobayashi S, Kobayashi K, Nohira T, Hagiwara R, Oishi T, Konishi H (2011) Electrochemical formation of Nd-Ni Alloys in molten LiF-CaF2-NdF3. J Electrochem Soc 158:E142–E146. doi:10.1149/2.072112jes
CAS
Article
Google Scholar
Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21. doi:10.1016/j.jenvman.2009.06.018
Article
Google Scholar
Bast U (2014) Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben: MORE (Motor Recycling). Final Research Report. http://edok01.tib.uni-hannover.de/edoks/e01fb15/826920594.pdf. Accessed 8 May 2016
Walachowicz F, March A, Fiedler S, Buchert M, Sutte J, Merz C (2014) Recycling von Elektromotoren-MORE: Ökobilanz der Recyclingverfahren. Final Report, Berlin. http://de.slideshare.net/AndrewMarch/morelcaendberichtfinal17okt2014. Accessed 8 May 2016
Sprecher B, Xiao Y, Walton A, Speight J, Harris R, Kleijn R, Visser G, Kramer GJ (2014) Life Cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ Sci Technol 48:3951–3958. doi:10.1021/es404596q
CAS
Article
Google Scholar