Skip to main content
Log in

The Contributions by Kazuhiro Otsuka to “Shape Memory and Superelasticity”: A Review

  • REVIEW
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

In this review, the research during the 50-year career in shape memory and superelasticity of Kazuhiro Otsuka is discussed, with a focus on his most cited publications. Not only did his research, in collaboration with many fellow scientists, explain the scientific basis for these phenomena, but also it has led to the realisation of a new aspect of the science of shape memory, particularly with regard to the physics of the most important Ti–Ni alloys, from the point of view of shape memory applications, as the result of the discovery of strain glass materials as a subset of shape memory behaviour for off-stoichiometric Ti50-xNi50+x compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright 1978, with permission from Elsevier

Fig. 6

Copyright 1981, with permission from Elsevier

Fig. 7

Copyright 1983, with permission from Elsevier

Fig. 8

Copyright 1990, with permission from Elsevier

Fig. 9
Fig. 10

Copyright 2005 by the American Physical Society

Fig. 11

Copyright 2006 by the American Physical Society

Fig. 12

Copyright 2006 by the American Physical Society

Fig. 13

Copyright 2010 by the American Physical Society

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Otsuka K, Wayman CM (eds) (1988) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Otsuka K, Wayman CM (1967) Epitaxial growth of vacuum-evaporated Co on NaCl I. Conditions leading to epitaxy. Phys Stat Sol 22:559–578

    CAS  Google Scholar 

  3. Otsuka K, Wayman CM (1967) Epitaxial growth of vacuum-evaporated Co on NaCl II. Analysis of diffraction patterns. Phys Stat Sol 22:579–592

    CAS  Google Scholar 

  4. Shimizu K, Wayman CM (1966) Discussion of “Factors determining twinning in martensites.” Acta Metall 14:1390–1391

    CAS  Google Scholar 

  5. Rachinger WA (1958) A “super-elastic” single crystal calibration bar. Brit J Appl Phys 9:250–252

    Google Scholar 

  6. Duggin MJ, Rachinger WA (1964) The nature of the martensitic transformation in a copper-nickel-aluminium alloy. Acta Met 12:529–535

    CAS  Google Scholar 

  7. Otsuka K, Shimizu K (1969) Morphology and crystallography of thermoelastic γ´ Cu–Al–Ni martensite. Jap J Appl Phys 8:1196–1204

    CAS  Google Scholar 

  8. Otsuka K, Shimizu K (1970) Memory effect and thermoelastic martensitic transformation in Cu–Al–Ni alloy. Scripta Metall 4:469–472

    CAS  Google Scholar 

  9. Otsuka K (1971) Origin of the memory effect in Cu–Al–Ni alloy. Japan J Appl Phys 10(5):571–579

    CAS  Google Scholar 

  10. Otsuka K, Shimizu K (1974) Morphology and crystallography of thermoelastic Cu–Al–Ni martensite analysed by the phenomenological theory. Trans Jpn Inst Metals 15:103–108

    CAS  Google Scholar 

  11. Wechsler MS, Lieberman DS, Read TA (1953) On the theory of the formation of martensite. Trans AIME 197:1503–1515

    Google Scholar 

  12. Bowles JS, McKenzie JK (1954) The crystallography of martensitic transformations I. Acta Met 2:129–137

    CAS  Google Scholar 

  13. McKenzie JK, Bowles JS (1954) The crystallography of martensitic transformations II. Acta Met 2:138–147

    Google Scholar 

  14. Sakamoto H, Otsuka K, Shimizu K (1977) Rubber-like behaviour in a Cu–Al–Ni alloy. Scripta Met 11:607–611

    CAS  Google Scholar 

  15. Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K (1976) Superelastic effects and stress-induced martensitic transformations in Cu–Al–Ni alloy. Acta Met 24:207–226

    CAS  Google Scholar 

  16. Otsuka K, Sakamoto H, Shimizu K (1976) Two stage superelasticity effects and stress-induced martensitic transformations in Cu–Al–Ni alloy. Scripta Met 10(11):983–988

    CAS  Google Scholar 

  17. Shimizu K, Sakamoto H, Otsuka K (1978) Phase diagram associated with stress-induced martensitic transformation in a Cu–Al–Ni alloy. Scripta Met 12(9):771–776

    CAS  Google Scholar 

  18. Otsuka K, Sakamoto H, Shimizu K (1979) Stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu–Al–Ni alloys. Acta Met 27:585–601

    CAS  Google Scholar 

  19. Otsuka K, Tokonami M, Shimizu K, Iwata Y, Shibuya I (1979) Structure analysis of stress-induced β1“ martensite in a Cu–Al–Ni alloy by neutron diffraction. Acta Met 27:965–972

    CAS  Google Scholar 

  20. Baron A (2022) A brief history of nitinol – Kellogs Research Labs. https://www.kelloggsresearchlabs.com/2018/01/10/brief-history-of-nitinol/. Accessed 27 Sept 2022

  21. Otsuka K, Sawamura T, Shimizu K (1971) Crystal structure and internal defects of equiatomic TiNi martensite. Phys Stat Sol (a) 5:457–470

    CAS  Google Scholar 

  22. Otsuka K, Sawamura T, Shimizu K, Wayman CM (1971) Characteristics of the martensitic transformation in TiNi and the memory effect. Met Trans 2:2583–2588

    CAS  Google Scholar 

  23. Kudoh Y, Tokonami M, Miyazaki S, Otsuka K (1985) Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analysed by the single crystal X-ray diffraction method. Acta Metall 33(11):2049–2056

    CAS  Google Scholar 

  24. Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudoplasticity and deformation behaviour in a Ti-50.6at.% Ni alloy. Scripta Metall 15:287–292

    CAS  Google Scholar 

  25. Takei F, Miura T, Miyazaki S, Kimura S, Otsuka K, Suzuki Y (1983) Stress-induced martensitic transformation in a Ti–Ni single crystal. Scripta Met 17:987–992

    CAS  Google Scholar 

  26. Miyazaki S, Otsuka K (1986) Deformation and transition behaviour associated with the R-phase in Ti–Ni alloys. Met Trans A 17A:53–63

    CAS  Google Scholar 

  27. Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperature of Ti–Ni alloys. Acta Metall 34(10):2045–2051

    CAS  Google Scholar 

  28. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys. Met Trans A 17A:115–120

    CAS  Google Scholar 

  29. Matsumoto O, Miyazaki S, Otsuka K, Tamura H (1987) Crystallography of martensitic transformation in Ti–Ni single crystals. Acta Metall 35(8):2537–2144

    Google Scholar 

  30. Miyazaki S, Kimura S, Otsuka K (1988) Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50.5at%Ni single crystals. Phil Mag A 57(3):467–478

    CAS  Google Scholar 

  31. Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in Ti–Ni alloys – I. Self accommodation Acta Metall 37(7):1873–1884

    CAS  Google Scholar 

  32. Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in Ti–Ni alloys – II. Variant coalescence and shape recovery. Acta Metall 37(7):1885–1890

    CAS  Google Scholar 

  33. Hara T, Ohba T, Okunishi E, Otsuka K (1997) Structural study of R-phase in Ti-50.23at%Ni and Ti-47.75at%Ni-1.50at%Fe alloys. Mater Trans JIM 38(1):11–17

    CAS  Google Scholar 

  34. Tanner LE, Soffa WA (1988) Foreward. Met Trans 19(4):760

    Google Scholar 

  35. Tanner LE, Wayman CM (1981) Foreward. Met Trans 12A(4):558

    Google Scholar 

  36. Otsuka K, Kubo H, Wayman CM (1981) Diffuse electron scattering and “streaming” effects. Met Trans 12A(4):595–605

    Google Scholar 

  37. Tanner LE, Schryvers D, Shapero SM (1990) Electron microscopy and neutron scattering studies of premartensitic behaviour in ordered Ni-Al β2 phase. Mater Sci Eng A127:205–213

    CAS  Google Scholar 

  38. Tanner LE (1966) Diffraction contrast from elastic shear strains due to coherent phases. Phil Mag 14:111–130

    CAS  Google Scholar 

  39. Otsuka K (1990) Crystallography of martensitic transformations and lattice invariant shears. Mater Sci Forum 56–58:393–404

    Google Scholar 

  40. Shapiro SM (1990) Neutron scattering studies of premartensitic phenomena. Mater Sci Forum 56–58:33–44

    Google Scholar 

  41. Finlayson TR, Liu M, Smith TF (1994) Thermal expansion and phonon anomalies near martensitic transformations. Advanced materials ’93 V/B. In: Otsuka K, Fuka Y (eds) Shape memory materials and hydrides, vol 18B. Elsevier Science Transactions of the Materials Research Society of Japan, Amsterdam, pp 835–838

    Google Scholar 

  42. Dianoux A-J, Lander G (eds) (2002) Neutron data booklet. Institute Laue-Langevin, Grenoble, pp 11–12

    Google Scholar 

  43. Ohba T, Shapiro SM, Aoki S, Otsuka K (1994) Phonon softening in Au-49.5at%Cd alloy. Jpn J Appl Phys 33:L631–L633

    Google Scholar 

  44. Ohba T, Finlayson TR, Otsuka K (1995) Diffraction profile change in Au-Cu-Zn alloy with aging. ICOMAT 95, eds R. Gotthardt and J. Van Humbeeck, J. de Physique IV (Colloque C8) suppl. J Physique III 5:C8-1083-C8-1086

    Google Scholar 

  45. Toyoshima N, Harada K, Abe H, Ohshima K, Suzuki T, Wuttig M, Finlayson T (1994) X-ray diffraction study of martensitic phase transformation in In-23at%Tl alloy. J Phys Soc Jpn 63:1803–1813

    Google Scholar 

  46. Otsuka K, Kakeshita T (2002) Science and technology of shape-memory alloys: new developments. MRS Bull 27(2):91–98

    Google Scholar 

  47. Duerig T (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104

    Google Scholar 

  48. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Mater Sci 50:511–678

    CAS  Google Scholar 

  49. Pelton AR, Berg BT, Saffari P, Stebner AP, Bucsek AN (2022) Pre-strain and mean strain effects on the fatigue behaviour of superelastic nitinol medical devices. Shape Mem Superelasticity 8:64–84. https://doi.org/10.1007/s40830-022-00377-y

    Article  Google Scholar 

  50. Sarkar S, Ren X, Otsuka K (2005) Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x. Phys Rev Lett 95:205702. https://doi.org/10.1103/PhysRevLett.95.205702

    Article  CAS  Google Scholar 

  51. Kartha S, Castan T, Krumhansl JA, Sethna JP (1991) Spin-glass nature of tweed precursors in martensitic transformations. Phys Rev Lett 67(25):3630–3633

    CAS  Google Scholar 

  52. Kartha S, Krumhansl JA, Sethna JA, Wickham LK (1995) Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys Rev B 52(2):803–822

    CAS  Google Scholar 

  53. Ren X, Wang Y, Zhou Y, Zhang Z, Wang D, Fan G, Otsuka K, Suzuki T, Ji Y, Zhang J, Tian Y, Hou S, Ding X (2010) Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Phil Mag. https://doi.org/10.1080/14786430903074771

    Article  Google Scholar 

  54. Wang Y, Ren X, Otsuka K (2006) Shape memory effect and superelasticity in a strain glass alloy. Phys Rev Lett 97:225703. https://doi.org/10.12103/PhysRevLett.97.225703

    Article  Google Scholar 

  55. Zhang Z, Wang Y, Wang D, Zhou Y, Otsuka K, Ren X (2010) Phase diagram of Ti50-xNi50+x: crossover from martensite to strain glass. Phys Rev B 81:224102. https://doi.org/10.1103/PhysRevB.81.224102

    Article  CAS  Google Scholar 

  56. Zhou Y, Xue D, Tian Y, Ding X, Guo S, Otsuka K, Sun J, Ren X (2014) Direct evidence for local symmetry breaking during a strain glass transition. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.112.025701

    Article  Google Scholar 

  57. Wang W, Ji Y, Fang M, Wang D, Ren S, Otsuka K, Wang Y, Ren X (2022) Reentrant strain glass transition in Ti–Ni-Cu shape memory alloy. Acta Mater. https://doi.org/10.1016/j.act.mat.2022.117618

    Article  Google Scholar 

  58. Otsuka K, Saxena A, Deng J, Ren X (2011) Mechanism of the shape memory effect in martensitic alloys: an assessment. Phil Mag. https://doi.org/10.1080/14786435.2011.608735

    Article  Google Scholar 

  59. Duerig TW (1990) Applications of shape memory. Mater Sci Forum 56–58:679–692

    Google Scholar 

  60. Balasubramanian M, Srimath R, Vignesh L, Rajesh S (2021) Application of shape memory alloys in engineering—A review. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/2054/1/012078

    Article  Google Scholar 

  61. Ohba T (ed) (2002) A tribute to the work of Professor Kazuhiro Otsuka. University of Tsukuba, Tsukuba

  62. Krumhansl JA (2000) Multiscale science: Materials in the 21st century. In: Saburi T (ed.) Shape Memory Materials, – Proceedings of the International Symposium and Exhibition on Shape Memory Materials (SMM ’99) held in Kanazawa, Japan, in May 1999, Mater. Sci. Forum vol 327–328, pp 1–8

Download references

Acknowledgments

I wish to acknowledge the hospitality of the research group of Professor George Franks, Department of Chemical Engineering, University of Melbourne, which enables me to continue my research. I am also most grateful to Kizuku Kushimoto, a visitor to the George Franks Research Group from Tohoku University, Japan, for his translations of the text of the Preface of the booklet, “A Tribute to the Work of Professor Kazuhiro Otsuka” [61].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Finlayson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue of Shape Memory and Superelasticity honoring Professor Kazuhiro Otsuka for his 50 years of research on shape memory alloys and his 85th birthday. The special issue was organized by Dr. Xiaobing Ren, National Institute for Materials Science; Prof. Antoni Planes, University of Barcelona; and Dr. Avadh Saxena, Los Alamos National Lab.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finlayson, T.R. The Contributions by Kazuhiro Otsuka to “Shape Memory and Superelasticity”: A Review. Shap. Mem. Superelasticity 9, 217–230 (2023). https://doi.org/10.1007/s40830-022-00406-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-022-00406-w

Keywords

Navigation