Skip to main content
Log in

Small talk: chemical conversations with bacteria

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

Communication is necessary for the coordination of living systems. Of interest to biochemistry and chemistry students as much as biology students, bacteria employ a variety of chemical signals to communicate among cells of the same species, across bacterial species, and with the human body. This chemical communication is necessary for bacteria to develop structured communities, express virulence, exchange genetic material, and influence human physiology. The roles of N-acyl-homoserine lactones and signal peptides in quorum sensing among bacteria as well as short chain fatty acids, hormones, and neurotransmitters between bacteria and humans are discussed. Possible applications of the manipulation of bacterial chemical communication are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Courtesy of Indiana University

Fig. 2
Fig. 3

Adapted from [43]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wyatt TD (2009) Fifty years of pheromones. Nature 457:262–263. https://doi.org/10.1038/457262a

    Article  PubMed  CAS  Google Scholar 

  2. Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665. https://doi.org/10.1111/j.1365-3040.2008.01913.x

    Article  PubMed  CAS  Google Scholar 

  3. Matthews CK (1993) The cell-bag of enzymes or network of channels? J Bacteriol 175:6377–6381

    Article  Google Scholar 

  4. Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736. https://doi.org/10.1139/m77-249

    Article  PubMed  CAS  Google Scholar 

  5. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. https://doi.org/10.1146/annurev.micro.54.1.49

    Article  PubMed  Google Scholar 

  6. Wireman JW, Dworkin M (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129:798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Investig 112:1466–1477. https://doi.org/10.1172/JCI20365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Wolcott RD (2008) Biofilms and chronic infections. JAMA 299:2682. https://doi.org/10.1001/jama.299.22.2682

    Article  PubMed  CAS  Google Scholar 

  9. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449. https://doi.org/10.1021/bi00512a013

    Article  PubMed  CAS  Google Scholar 

  10. Farghaly A-H (1950) Factors influencing the growth and light production of luminous bacteria. J Cell Comp Physiol 36:165–183. https://doi.org/10.1002/jcp.1030360205

    Article  PubMed  CAS  Google Scholar 

  11. Kempner ES, Hanson FE (1968) Aspects of light production by Photobacterium fischeri. J Bacteriol 95:975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781. https://doi.org/10.1016/0092-8674(83)90063-6

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaplan HB, Greenberg EP (1987) Overproduction and purification of the luxR gene product: transcriptional activator of the Vibrio fischeri luminescence system. Proc Natl Acad Sci 84:6639–6643. https://doi.org/10.1073/pnas.84.19.6639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci 81:4154–4158. https://doi.org/10.1073/pnas.81.13.4154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci 91:12619–12623. https://doi.org/10.1073/pnas.91.26.12619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Shimkets LJ (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53:525–549. https://doi.org/10.1146/annurev.micro.53.1.525

    Article  PubMed  CAS  Google Scholar 

  21. Davies DG (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298. https://doi.org/10.1126/science.280.5361.295

    Article  PubMed  CAS  Google Scholar 

  22. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427. https://doi.org/10.1101/cshperspect.a012427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cao J-G, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264:21670–21676

    PubMed  CAS  Google Scholar 

  24. Kleerebezem M, Quadri LEN, Kuipers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x

    Article  PubMed  CAS  Google Scholar 

  25. Nishida H, Ohnishi Y, Beppu T, Horinouchi S (2007) Evolution of γ-butyrolactone synthases and receptors in Streptomyces. Environ Microbiol 9:1986–1994. https://doi.org/10.1111/j.1462-2920.2007.01314.x

    Article  PubMed  CAS  Google Scholar 

  26. Monnet V, Juillard V, Gardan R (2014) Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol. https://doi.org/10.3109/1040841X.2014.948804

    Article  PubMed  Google Scholar 

  27. Pakula R, Piechowska M, Bankowska E, Walczak W (1962) A characteristic of DNA mediated transformation systems of two streptococcal strains. Acta Microbiol Pol 11:205–222

    CAS  Google Scholar 

  28. Leonard CG, Cole RM (1972) Purification and properties of streptococcal competence factor isolated from chemically defined medium. J Bacteriol 110:273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shanker E, Federle M (2017) Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8:15. https://doi.org/10.3390/genes8010015

    Article  PubMed Central  CAS  Google Scholar 

  30. Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 172:3701–3706. https://doi.org/10.1128/jb.172.7.3701-3706.1990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nyholm SV, McFall-Ngai M (2004) The winnowing: establishing the squid–vibrio symbiosis. Nat Rev Microbiol 2:632–642. https://doi.org/10.1038/nrmicro957

    Article  PubMed  CAS  Google Scholar 

  32. Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci 109:8259–8263. https://doi.org/10.1073/pnas.1118131109

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pollitt EJG, West SA, Crusz SA, Burton-Chellew MN, Diggle SP (2014) Cooperation, quorum sensing, and evolution of virulence in Staphylococcus aureus. Infect Immun 82:1045–1051. https://doi.org/10.1128/IAI.01216-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027. https://doi.org/10.1038/nature02744

    Article  PubMed  CAS  Google Scholar 

  35. Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55:1323–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burland V (1998) The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26:4196–4204. https://doi.org/10.1093/nar/26.18.4196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Carattoli A (2009) Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238. https://doi.org/10.1128/AAC.01707-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Haque M, Sartelli M, McKimm J, Abu Bakar MB (2018) Health care-associated infections—an overview. Infect Drug Resist 11:2321–2333. https://doi.org/10.2147/IDR.S177247

    Article  PubMed  PubMed Central  Google Scholar 

  39. Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:160–166. https://doi.org/10.1177/003335490712200205

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chaudhury A, As Rani, Kalawat U, Sumant S, Verma A, Venkataramana B (2016) Antibiotic resistance and pathogen profile in ventilator-associated pneumonia in a tertiary care hospital in India. Indian J Med Res 144:440. https://doi.org/10.4103/0971-5916.198679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shi K, Brown CK, Gu Z-Y, Kozlowicz BK, Dunny GM, Ohlendorf DH, Earhart CA (2005) Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc Natl Acad Sci 102:18596–18601. https://doi.org/10.1073/pnas.0506163102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Dunny GM (2007) The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell–cell signalling, gene transfer, complexity and evolution. Philos Trans R Soc B Biol Sci 362:1185–1193. https://doi.org/10.1098/rstb.2007.2043

    Article  CAS  Google Scholar 

  43. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci 100:14549–14554. https://doi.org/10.1073/pnas.1934514100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem 10:205–216. https://doi.org/10.1002/cbic.200800521

    Article  PubMed  CAS  Google Scholar 

  45. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116. https://doi.org/10.1093/femsre/fuv038

    Article  PubMed  CAS  Google Scholar 

  46. Morohoshi T, Ebata A, Nakazawa S, Kato N, Ikeda T (2005) N-Acyl homoserine lactone-producing or -degrading bacteria isolated from the intestinal microbial flora of ayu fish (Plecoglossus altivelis). Microbes Environ 20:264–268. https://doi.org/10.1264/jsme2.20.264

    Article  Google Scholar 

  47. Greenberg EP, Hastings JW, Ulitzur S (1979) Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch Microbiol 120:87–91. https://doi.org/10.1007/BF00409093

    Article  CAS  Google Scholar 

  48. Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045. https://doi.org/10.1128/jb.179.12.4043-4045.1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Investig 112:1291–1299. https://doi.org/10.1172/JCI200320195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Schauder S (2001) The languages of bacteria. Genes Dev 15:1468–1480. https://doi.org/10.1101/gad.899601

    Article  PubMed  CAS  Google Scholar 

  51. Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786. https://doi.org/10.1111/j.1365-2958.1993.tb01737.x

    Article  PubMed  CAS  Google Scholar 

  52. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545

    Article  CAS  PubMed  Google Scholar 

  53. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB (1999) Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci 96:15196–15201. https://doi.org/10.1073/pnas.96.26.15196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Sperandio V, Torres AG, Giron JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197. https://doi.org/10.1128/JB.183.17.5187-5197.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fong KP, Gao L, Demuth DR (2003) luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect Immun 71:298–308. https://doi.org/10.1128/IAI.71.1.298-308.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma-54. Mol Microbiol 36:940–954. https://doi.org/10.1046/j.1365-2958.2000.01913.x

    Article  PubMed  CAS  Google Scholar 

  57. Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P (2002) Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 68:3780–3789. https://doi.org/10.1128/AEM.68.8.3780-3789.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284. https://doi.org/10.1128/JB.185.1.274-284.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456. https://doi.org/10.1111/j.1365-2958.2006.05202.x

    Article  PubMed  CAS  Google Scholar 

  60. Thompson JA, Oliveira RA, Xavier KB (2016) Chemical conversations in the gut microbiota. Gut Microbes 7:163–170. https://doi.org/10.1080/19490976.2016.1145374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S (2013) An estimation of the number of cells in the human body. Ann Hum Biol. https://doi.org/10.3109/03014460.2013.807878

    Article  PubMed  Google Scholar 

  63. Macfarlane S, Macfarlane GT (2004) Bacterial diversity in the human gut. In: Advances in applied microbiology. Elsevier, Amsterdam, pp 261–289

    Google Scholar 

  64. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Francesco VD, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji R-R, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang ZY, Wang A, Wang X, Wang J, Wei M-H, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu SC, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers Y-H, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang Y-H, Coyne M, Dahlke C, Mays AD, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040

    Article  PubMed  CAS  Google Scholar 

  65. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C, van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G, Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M, Maguin E, Melo Minardi R, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T, Varela E, de Vos W, Winogradsky Y, Zoetendal E, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8

    Article  PubMed  CAS  Google Scholar 

  67. Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP (2009) Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell 8:1658–1664. https://doi.org/10.1128/EC.00070-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Holm A, Vikström E (2014) Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front Plant Sci 5:309. https://doi.org/10.3389/fpls.2014.00309

    Article  PubMed  PubMed Central  Google Scholar 

  69. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  70. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed Central  Google Scholar 

  71. Vogt SL, Peña-Díaz J, Finlay BB (2015) Chemical communication in the gut: effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34:106–115. https://doi.org/10.1016/j.anaerobe.2015.05.002

    Article  PubMed  CAS  Google Scholar 

  72. Li Y-H, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908. https://doi.org/10.1128/JB.183.3.897-908.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shareck J, Belhumeur P (2011) Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell 10:1004–1012. https://doi.org/10.1128/EC.05030-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci 100:8951–8956. https://doi.org/10.1073/pnas.1537100100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Kendall MM, Sperandio V (2014) Cell-to-cell signaling in Escherichia coli and Salmonella. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0002-2013

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120. https://doi.org/10.1038/nrmicro1836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Freestone P (2013) Communication between bacteria and their hosts. Scientifica 2013:1–15. https://doi.org/10.1155/2013/361073

    Article  CAS  Google Scholar 

  78. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H (2016) Cospeciation of gut microbiota with hominids. Science 353:380–382. https://doi.org/10.1126/science.aaf3951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. https://doi.org/10.1038/sj.embor.7400731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Batterham RL, Bloom SR (2003) The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 994:162–168. https://doi.org/10.1111/j.1749-6632.2003.tb03176.x

    Article  PubMed  CAS  Google Scholar 

  81. Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Investig 101:515–520. https://doi.org/10.1172/JCI990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Walsh CJ, Guinane CM, O’Toole PW, Cotter PD (2014) Beneficial modulation of the gut microbiota. FEBS Lett 588:4120–4130. https://doi.org/10.1016/j.febslet.2014.03.035

    Article  PubMed  CAS  Google Scholar 

  83. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mäkeläinen H, Forssten S, Saarinen M, Stowell J, Rautonen N, Ouwehand A (2010) Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Benef Microbes 1:81–91. https://doi.org/10.3920/BM2009.0025

    Article  PubMed  CAS  Google Scholar 

  85. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. J Vet Pharmacol Ther 31:187–199. https://doi.org/10.1111/j.1365-2885.2008.00944.x

    Article  PubMed  CAS  Google Scholar 

  86. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behav Brain Res 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027

    Article  PubMed  CAS  Google Scholar 

  87. Ridaura V, Belkaid Y (2015) Gut microbiota: the link to your second brain. Cell 161:193–194. https://doi.org/10.1016/j.cell.2015.03.033

    Article  PubMed  CAS  Google Scholar 

  88. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403. https://doi.org/10.1096/fj.14-259598

    Article  PubMed  CAS  Google Scholar 

  89. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108:16050–16055. https://doi.org/10.1073/pnas.1102999108

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S, Sadowsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R (2017) Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10. https://doi.org/10.1186/s40168-016-0225-7

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kang D-W, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, Caporaso JG, Krajmalnik-Brown R (2019) Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep 9:5821. https://doi.org/10.1038/s41598-019-42183-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Glucksam-Galnoy Y, Sananes R, Silberstein N, Krief P, Kravchenko VV, Meijler MM, Zor T (2013) The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-l-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages. J Immunol 191:337–344. https://doi.org/10.4049/jimmunol.1300368

    Article  PubMed  CAS  Google Scholar 

  93. Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Wood MR, Brogan AP, Lehmann M, Mee JM, Iwata K, Pan Q, Fearns C, Knaus UG, Meijler MM, Janda KD, Ulevitch RJ (2006) N-(3-Oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. J Biol Chem 281:28822–28830. https://doi.org/10.1074/jbc.M606613200

    Article  PubMed  CAS  Google Scholar 

  94. Williams SC, Patterson EK, Carty NL, Griswold JA, Hamood AN, Rumbaugh KP (2004) Pseudomonas aeruginosa autoinducer enters and functions in mammalian cells. J Bacteriol 186:2281–2287. https://doi.org/10.1128/JB.186.8.2281-2287.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sandrini S, Aldriwesh M, Alruways M, Freestone P (2015) Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol 225:R21–R34. https://doi.org/10.1530/JOE-14-0615

    Article  PubMed  CAS  Google Scholar 

  96. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GSAB, Bycroft BW, Pritchard DI (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K (2003) The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71:5785–5793. https://doi.org/10.1128/IAI.71.10.5785-5793.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Boontham P, Robins A, Chandran P, Pritchard D, Cámara M, Williams P, Chuthapisith S, McKechnie A, Rowlands BJ, Eremin O (2008) Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis. Clin Sci 115:343–351. https://doi.org/10.1042/CS20080018

    Article  CAS  Google Scholar 

  99. Shiner EK, Rumbaugh KP, Williams SC (2005) Interkingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29:935–947. https://doi.org/10.1016/j.femsre.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  100. Vikström E, Tafazoli F, Magnusson K-E (2006) Pseudomonas aeruginosa quorum sensing molecule N-(3 oxododecanoyl)-l-homoserine lactone disrupts epithelial barrier integrity of Caco-2 cells. FEBS Lett 580:6921–6928. https://doi.org/10.1016/j.febslet.2006.11.057

    Article  PubMed  CAS  Google Scholar 

  101. Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB (2007) The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1:299–308. https://doi.org/10.1016/j.chom.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  102. Okamoto K, Fujiya M, Nata T, Ueno N, Inaba Y, Ishikawa C, Ito T, Moriichi K, Tanabe H, Mizukami Y, Chang EB, Kohgo Y (2012) Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. Int J Colorectal Dis 27:1039–1046. https://doi.org/10.1007/s00384-012-1416-8

    Article  PubMed  Google Scholar 

  103. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci 101:3587–3590. https://doi.org/10.1073/pnas.0308750101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253:29–37. https://doi.org/10.1016/j.femsle.2005.09.023

    Article  PubMed  CAS  Google Scholar 

  105. Teiber JF, Horke S, Haines DC, Chowdhary PK, Xiao J, Kramer GL, Haley RW, Draganov DI (2008) Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-l-homoserine lactone. Infect Immun 76:2512–2519. https://doi.org/10.1128/IAI.01606-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rothfork JM, Timmins GS, Harris MN, Chen X, Lusis AJ, Otto M, Cheung AL, Gresham HD (2004) Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proc Natl Acad Sci 101:13867–13872. https://doi.org/10.1073/pnas.0402996101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Bergquist J, Tarkowski A, Ewing A, Ekman R (1998) Catecholaminergic suppression of immunocompetent cells. Immunol Today 19:562–567. https://doi.org/10.1016/S0167-5699(98)01367-X

    Article  PubMed  CAS  Google Scholar 

  108. Patel P, Nankova BB, LaGamma EF (2005) Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Dev Brain Res 160:53–62. https://doi.org/10.1016/j.devbrainres.2005.08.005

    Article  CAS  Google Scholar 

  109. Freestone P, Haigh RD, Lyte M (2007) Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 7:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Patt WM, Conte L, Blaha M, Plotkin JB (2018) Steroid hormones as interkingdom signaling molecules: innate immune function and microbial colonization modulation. AIMS Mol Sci 5:117–130. https://doi.org/10.3934/molsci.2018.1.117

    Article  CAS  Google Scholar 

  111. Fidel PL, Cutright J, Steele C (2000) Effects of reproductive hormones on experimental vaginal candidiasis. Infect Immun 68:651–657. https://doi.org/10.1128/IAI.68.2.651-657.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Knecht LD, O’Connor G, Mittal R, Liu XZ, Daftarian P, Deo SK, Daunert S (2016) Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine 9:161–169. https://doi.org/10.1016/j.ebiom.2016.05.037

    Article  PubMed  PubMed Central  Google Scholar 

  113. Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases: quorum sensing inhibitors. EMBO Mol Med 1:201–210. https://doi.org/10.1002/emmm.200900032

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rasko DA, Moreira CG, Li DR, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V (2008) Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080. https://doi.org/10.1126/science.1160354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Perez-Burgos A, Wang B, Mao Y-K, Mistry B, Neufeld K-AM, Bienenstock J, Kunze W (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 304:G211–G220. https://doi.org/10.1152/ajpgi.00128.2012

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne Kagle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagle, J. Small talk: chemical conversations with bacteria. ChemTexts 6, 6 (2020). https://doi.org/10.1007/s40828-020-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-0102-7

Keywords

Navigation