S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235–264 (2002). https://doi.org/10.1016/s0360-3199(01)00131-8
Article
Google Scholar
M. Momirlan, T. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 30(7), 795–802 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.011
Article
Google Scholar
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
Article
Google Scholar
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
Article
Google Scholar
F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20(1), 35–54 (2008). https://doi.org/10.1021/cm7024203
Article
Google Scholar
X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645
Article
Google Scholar
S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
Article
Google Scholar
Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/C5CS00434A
Article
Google Scholar
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
Article
Google Scholar
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23–J26 (2005). https://doi.org/10.1149/1.1856988
Article
Google Scholar
M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015). https://doi.org/10.1038/nmat4410
Article
Google Scholar
W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E.I. Altman, H. Wang, A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 7, 10771 (2016). https://doi.org/10.1038/ncomms10771
Article
Google Scholar
Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang, Q. Yan, Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
Article
Google Scholar
M.C. Friedel, Soufre et ses composés—sur une nouvelle série de sulfophosphures, les thiohypophosphates. C. R. l’Academie. Sci. Ser. III. 119, 260 (1894)
Google Scholar
H. Hahn, W. Klingen, Uber einige ternäre verbindungen vom typ des arsenopyrits. Naturwissenschaften 52(17), 494 (1965). https://doi.org/10.1007/bf00646574
Article
Google Scholar
W. Klingen, G. Eulenberger, H. Hahn, Uber hexathio- und hexaselenohypodiphosphate vom typ M2 II P2X6. Naturwissenschaften 55(5), 229–230 (1968). https://doi.org/10.1007/bf00606219
Article
Google Scholar
W. Klingen, G. Eulenberger, H. Hahn, Uber hexachalkogeno-hypodiphosphate vom typ M2P2X6. Naturwissenschaften 57(2), 88 (1970). https://doi.org/10.1007/bf00590690
Article
Google Scholar
R. Nitsche, P. Wild, Crystal growth of metal-phosphorus-sulfur compounds by vapor transport. Mater. Res. Bull. 5(6), 419–423 (1970). https://doi.org/10.1016/0025-5408(70)90080-2
Article
Google Scholar
W. Klingen, G. Eulenberger, H. Hahn, Uber die kristallstrukturen von Fe2P2Se6 und Fe2P2S6. Z. Anorg. Allg. Chem. 401(1), 97–112 (1973). https://doi.org/10.1002/zaac.19734010113
Article
Google Scholar
W. Klingen, R. Ott, H. Hahn, Uber die darstellung und eigenschaften von hexathio- und hexaselenohypodiphosphaten. Z. Anorg. Allg. Chem. 396(3), 271–278 (1973). https://doi.org/10.1002/zaac.19733960305
Article
Google Scholar
R. Nitsche, Crystal chemistry, growth and properties of multi-cation chalcogenides. J. Phys. Colloq. 36(C3), 9–15 (1975). https://doi.org/10.1051/jphyscol:1975302
Article
Google Scholar
M.Z. Jandali, G. Eulenberger, H. Hahn, Die kristallstrukturen von Hg2P2S6 und Hg2P2Se6. Z. Anorg. Allg. Chem. 447(1), 105–118 (1978). https://doi.org/10.1002/zaac.19784470110
Article
Google Scholar
A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun. 40(12), 1067–1072 (1981). https://doi.org/10.1016/0038-1098(81)90253-2
Article
Google Scholar
G. Ouvrard, R. Brec, J. Rouxel, Structural determination of some MPS3 layered phases (M = Mn, Fe Co, Ni and Cd). Mater. Res. Bull. 20(10), 1181–1189 (1985). https://doi.org/10.1016/0025-5408(85)90092-3
Article
Google Scholar
G. Ouvrard, R. Fréour, R. Brec, J. Rouxel, A mixed valence compound in the two dimensional MPS3 family: V0.78PS3 structure and physical properties. Mater. Res. Bull. 20(9), 1053–1062 (1985). https://doi.org/10.1016/0025-5408(85)90204-1
Article
Google Scholar
R. Brec, Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ionics 22(1), 3–30 (1986). https://doi.org/10.1016/0167-2738(86)90055-x
Article
Google Scholar
E. Prouzet, G. Ouvrard, R. Brec, Structure determination of ZnPS3. Mater. Res. Bull. 21(2), 195–200 (1986). https://doi.org/10.1016/0025-5408(86)90206-0
Article
Google Scholar
P.J.S. Foot, T. Katz, S.N. Patel, B.A. Nevett, A.R. Pieecy, A.A. Balchin, The structures and conduction mechanisms of lithium-intercalated and lithium-substituted nickel phosphorus trisulphide (NiPS3), and the use of the material as a secondary battery electrode. Phys. Status Solidi A 100(1), 11–29 (1987). https://doi.org/10.1002/pssa.2211000102
Article
Google Scholar
Z. Ouili, A. Leblanc, P. Colombet, Crystal structure of a new lamellar compound: Ag1/2In1/2PS3. J. Solid State Chem. 66(1), 86–94 (1987). https://doi.org/10.1016/0022-4596(87)90223-4
Article
Google Scholar
S. Lee, P. Colombet, G. Ouvrard, R. Brec, General trends observed in the substituted thiophosphate family. Synthesis and structure of silver scandium thiophosphate, AgScP2S6, and cadmium iron thiophosphate, CdFeP2S6. Inorg. Chem. 27(7), 1291–1294 (1988). https://doi.org/10.1021/ic00280a041
Article
Google Scholar
A. Aruchamy, Photoelectrochemical investigation of n- and p-doped nickel phosphorous trisulfide(NiPS3). J. Electrochem. Soc. 136(8), 2261 (1989). https://doi.org/10.1149/1.2097288
Article
Google Scholar
A. Bhowmick, B. Bal, S. Ganguly, M. Bhattacharya, M.L. Kundu, Investigation of the layered compound fe0.5cd0.5ps3. J. Phys. Chem. Solids 53(10), 1279–1284 (1992). https://doi.org/10.1016/0022-3697(92)90246-A
Article
Google Scholar
P.A. Joy, S. Vasudevan, Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992). https://doi.org/10.1103/PhysRevB.46.5425
Article
Google Scholar
R. Pfeiff, R. Kniep, Quaternary selenodiphosphates(iv): MIMIII[P2Se6], (MI = Cu, Ag; MIII = Cr, Al, Ga, In). J. Alloys Compd. 186(1), 111–133 (1992). https://doi.org/10.1016/0925-8388(92)90626-K
Article
Google Scholar
F. Boucher, M. Evain, R. Brec, Second-order jahn—teller effect in CdPS3 and ZnPS3 demonstrated by a non-harmonic behaviour of Cd2+ and Zn2+ d10 ions. J. Alloys Compd. 215(1–2), 63–70 (1994). https://doi.org/10.1016/0925-8388(94)90819-2
Article
Google Scholar
A. Simon, J. Ravez, V. Maisonneuve, C. Payen, V.B. Cajipe, Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 6(9), 1575–1580 (1994). https://doi.org/10.1021/cm00045a016
Article
Google Scholar
F. Boucher, M. Evain, R. Brec, Phase transition upon d10 Cd2+ ordering in CdPS3. Acta Crystallogr. B 51, 952–961 (1995). https://doi.org/10.1107/s0108768195004824
Article
Google Scholar
T. Coradin, R. Clément, P.G. Lacroix, K. Nakatani, From intercalation to aggregation: nonlinear optical properties of stilbazolium chromophores-mps3 layered hybrid materials. Chem. Mater. 8(8), 2153–2158 (1996). https://doi.org/10.1021/cm960060x
Article
Google Scholar
X. Bourdon, V. Maisonneuve, V.B. Cajipe, C. Payen, J.E. Fischer, Copper sublattice ordering in layered CuMP2Se6 (M = In, Cr). J. Alloys Compd. 283(1–2), 122–127 (1999). https://doi.org/10.1016/S0925-8388(98)00899-8
Article
Google Scholar
D. Gonbeau, T. Coradin, R. Clement, Xps study of stilbazolium chromophores and their intercalation compounds in the MnPS3 layered phase. J. Phys. Chem. B 103(18), 3545–3551 (1999). https://doi.org/10.1021/jp9843196
Article
Google Scholar
T.V. Misuryaev, T.V. Murzina, O.A. Aktsipetrov, N.E. Sherstyuk, V.B. Cajipe, X. Bourdon, Second harmonic generation in the lamellar ferrielectric CuInP2S6. Solid State Commun. 115, 605–608 (2000). https://doi.org/10.1016/S0038-1098(00)00257-X
Article
Google Scholar
S. Jörgens, A. Mewis, Die kristallstrukturen von hexachalcogeno-hypodiphosphaten des magnesiums und zinks. Z. Anorg. Allg. Chem. 630(1), 51–57 (2004). https://doi.org/10.1002/zaac.200300244
Article
Google Scholar
R.F. Frindt, D. Yang, P. Westreich, Exfoliated single molecular layers of Mn0.8PS3 and Cd0.8PS3. J. Mater. Res. 20(5), 1107–1112 (2005). https://doi.org/10.1557/JMR.2005.0161
Article
Google Scholar
A.R. Wildes, H.M. Rønnow, B. Roessli, M.J. Harris, K.W. Godfrey, Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.094422
Article
Google Scholar
K.C. Rule, G.J. McIntyre, S.J. Kennedy, T.J. Hicks, Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007). https://doi.org/10.1103/PhysRevB.76.134402
Article
Google Scholar
L. Silipigni, T. Quattrone, L. Schirò, V. Grasso, L.M. Scolaro, G. De Luca, G. Salvato, X-ray photoelectron spectroscopy and X-ray excited auger spectroscopy studies of manganese thiophosphate intercalated with sodium ions. J. Appl. Phys. 104, 123711 (2008). https://doi.org/10.1063/1.3048546
Article
Google Scholar
A. Pfitzner, S. Seidlmayer, Synthesis and structure determination of AgScP2Se6, AgErP2Se6 and AgTmP2Se6. Z. Anorg. Allg. Chem. 635(4–5), 704–707 (2009). https://doi.org/10.1002/zaac.200900004
Article
Google Scholar
B. Konkena, J. Masa, A.J.R. Botz, I. Sinev, W. Xia, J. Kossmann, R. Drautz, M. Muhler, W. Schuhmann, Metallic NiPS3@NiOOH core-shell heterostructures as highly efficient and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 7(1), 229–237 (2017). https://doi.org/10.1021/acscatal.6b02203
Article
Google Scholar
J. Liu, X.B. Li, D. Wang, W.M. Lau, P. Peng, L.M. Liu, Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting. J. Chem. Phys. 140, 054707 (2014). https://doi.org/10.1063/1.4863695
Article
Google Scholar
K.Z. Du, X.Z. Wang, Y. Liu, P. Hu, M.I. Utama, C.K. Gan, Q. Xiong, C. Kloc, Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10(2), 1738–1743 (2016). https://doi.org/10.1021/acsnano.5b05927
Article
Google Scholar
R. Dangol, Z. Dai, A. Chaturvedi, Y. Zheng, Y. Zhang, K.N. Dinh, B. Li, Y. Zong, Q. Yan, Few-layer NiPS3 nanosheets as bifunctional materials for Li-ion storage and oxygen evolution reaction. Nanoscale 10(10), 4890–4896 (2018). https://doi.org/10.1039/C7NR08745D
Article
Google Scholar
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
Article
Google Scholar
H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
Article
Google Scholar
Y. Tingting, A. Xiurui, H. Hongxian, C.J. Qianjun, L. Can, Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 8(21), 1800210 (2018). https://doi.org/10.1002/aenm.201800210
Article
Google Scholar
X. Zhang, X. Zhao, D. Wu, Y. Jing, Z. Zhou, MnPSe3 monolayer: a promising 2d visible-light photohydrolytic catalyst with high carrier mobility. Adv. Sci. 3(10), 1600062 (2016). https://doi.org/10.1002/advs.201600062
Article
Google Scholar
Q. Pei, Y. Song, X. Wang, J. Zou, W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der waals heterostructures. Sci. Rep. 7, 9504 (2017). https://doi.org/10.1038/s41598-017-10145-z
Article
Google Scholar
N. Gheshlaghi, H.S. Pisheh, H. Ünlü, Composition and strain effects in type i and type ii heterostructure ZnSe/Cd(Zn)S and ZnSe/Cd1−xZnxS core/shell quantum dots. Superlattice Microstruct. 111, 156–165 (2017). https://doi.org/10.1016/j.spmi.2017.06.026
Article
Google Scholar
D. Dirk, F. Thomas, O. Ruth, B. Maya, L. Efrat, A.K. Thomas, E. Alexander, Type-I and type-II nanoscale heterostructures based on cdte nanocrystals: a comparative study. Small 4(8), 1148–1152 (2008). https://doi.org/10.1002/smll.200800287
Article
Google Scholar
M. Landmann, E. Rauls, W.G. Schmidt, Understanding band alignments in semiconductor heterostructures: composition dependence and type-I–type-II transition of natural band offsets in nonpolar zinc-blende AlxGa1−xN/AlyGa1−yN composites. Phys. Rev. B 95, 155310 (2017). https://doi.org/10.1103/PhysRevB.95.155310
Article
Google Scholar
P. Qi, W. Xiaocha, Z. Jijun, M. Wenbo, Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der waals heterostructures. Nanotechnology 29, 214001 (2018). https://doi.org/10.1088/1361-6528/aab5ab
Article
Google Scholar
G. Long, T. Zhang, X. Cai, J. Hu, C.-W. Cho et al., Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11(11), 11330–11336 (2017). https://doi.org/10.1021/acsnano.7b05856
Article
Google Scholar
F. Wang, T.A. Shifa, P. He, Z. Cheng, J. Chu et al., Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy 40, 673–680 (2017). https://doi.org/10.1016/j.nanoen.2017.09.017
Article
Google Scholar
C. Zhongzhou, S.T. Ahmed, W. Fengmei, G. Yi, H. Peng, Z. Kai, J. Chao, L. Quanlin, H. Jun, High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv. Mater. 30(26), e1707433 (2018). https://doi.org/10.1002/adma.201707433
Article
Google Scholar
H. Bing, H.Y. Hang, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4(5), 285–304 (2016). https://doi.org/10.1002/ese3.128
Article
Google Scholar
A.T. Montoya, E.G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. ACS Omega 3(3), 2947–2955 (2018). https://doi.org/10.1021/acsomega.7b02021
Article
Google Scholar
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on moni4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
Article
Google Scholar
R.N. Jenjeti, M.P. Austeria, S. Sampath, Alternate to molybdenum disulfide: a 2d, few-layer transition-metal thiophosphate and its hydrogen evolution reaction activity over a wide pH range. ChemElectroChem 3(9), 1392–1399 (2016). https://doi.org/10.1002/celc.201600235
Article
Google Scholar
C.C. Mayorga-Martinez, Z. Sofer, D. Sedmidubsky, S. Huber, A.Y.S. Eng, M. Pumera, Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 9(14), 12563–12573 (2017). https://doi.org/10.1021/acsami.6b16553
Article
Google Scholar
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
Article
Google Scholar
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7(8), 2624–2629 (2014). https://doi.org/10.1039/C4EE00957F
Article
Google Scholar
D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide ph range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
Article
Google Scholar
K. Li, D. Rakov, W. Zhang, P. Xu, Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chem. Commun. 53(58), 8199–8202 (2017). https://doi.org/10.1039/c7cc03173d
Article
Google Scholar
B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
Article
Google Scholar
S. Giménez, J. Bisquert, Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices, 1st edn. (Springer, Berlin, 2016), pp. 549–559. https://doi.org/10.1007/978-3-319-29641-8
Book
Google Scholar
X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 10(10), 893–899 (2017). https://doi.org/10.1039/C6EE03145E
Article
Google Scholar
P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 9(3), 2500–2508 (2017). https://doi.org/10.1021/acsami.6b13984
Article
Google Scholar
H. Peilei, Y. Xin-Yao, L.X. Wen, Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Edit. 56(14), 3897–3900 (2017). https://doi.org/10.1002/anie.201612635
Article
Google Scholar
F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
Article
Google Scholar
A. Michas, F. Andolfatto, M.E.G. Lyons, R. Durand, Gas evolution reactions at conductive metallic oxide electrodes for solid polymer electrolyte water electrolysis. Key Eng. Mater. 72–74, 535–550 (1992)
Article
Google Scholar
Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2d Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
Article
Google Scholar
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
Article
Google Scholar
C.-F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang, Q. Yan, Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated Mxene hybrids for overall water splitting. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801127
Article
Google Scholar
D. Xiong, X. Wang, W. Li, L. Liu, Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chem. Commun. 52(56), 8711–8714 (2016). https://doi.org/10.1039/C6CC04151E
Article
Google Scholar
D. Li, H. Baydoun, C.N. Verani, S.L. Brock, Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138(12), 4006–4009 (2016). https://doi.org/10.1021/jacs.6b01543
Article
Google Scholar
K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, Ultrathin porous nifev ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14(8), 1703257 (2017). https://doi.org/10.1002/smll.201703257
Article
Google Scholar
L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
Article
Google Scholar