Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9(3), 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
Article
Google Scholar
D. Thuau, C. Ayela, E. Lemaire, S. Heinrich, P. Poulin, I. Dufour, Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators. Mater. Horiz. 2(1), 106–112 (2015). https://doi.org/10.1039/C4MH00165F
Article
Google Scholar
J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9(3), 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
Article
Google Scholar
Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
Article
Google Scholar
S. Stassi, E. Fantino, R. Calmo, A. Chiappone, M. Gillono et al., Polymeric 3D printed functional microcantilevers for biosensing applications. ACS Appl. Mater. Interfaces 9(22), 19193–19201 (2017). https://doi.org/10.1021/acsami.7b04030
Article
Google Scholar
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
Article
Google Scholar
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
Article
Google Scholar
J. Yin, V.J. Santos, J.D. Posner, Bioinspired flexible microfluidic shear force sensor skin. Sens. Actuator A-Phys. 264, 289–297 (2017). https://doi.org/10.1016/j.sna.2017.08.001
Article
Google Scholar
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x
Article
Google Scholar
W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating. ACS Nano 9(4), 4244–4251 (2015). https://doi.org/10.1021/acsnano.5b00626
Article
Google Scholar
P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
Article
Google Scholar
J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011). https://doi.org/10.1038/nnano.2011.44
Article
Google Scholar
L.A. Pinnaduwage, T. Thundat, A. Gehl, S.D. Wilson, D.L. Hedden, R.T. Lareau, Deposition characteristics of uncoated silicon micro-cantilever surfaces for explosive and common non-explosive vapors. Ultramicroscopy 100(3–4), 211–216 (2004). https://doi.org/10.1016/j.ultramic.2003.11.006
Article
Google Scholar
M. Alvarez, A. Calle, J. Tamayo, L.M. Lechuga, A. Abad, A. Montoya, Development of nanomechanical biosensors for detection of pesticides DDT. Biosens. Bioelectron. 18(5), 649–653 (2003). https://doi.org/10.1016/S0956-5663(03)00035-6
Article
Google Scholar
H.J. Pandya, W. Chen, L.A. Goodell, D.J. Foran, J.P. Desai, Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissue. Lab Chip 14(23), 4523–4532 (2014). https://doi.org/10.1039/C4LC00594E
Article
Google Scholar
R. Raiteri, G. Nelles, H.J. Butt, W. Knoll, P. Skladal, Sensing of biological substances based on the bending of microfabricated cantilevers. Sens. Actuator B-Chem. 61(1–3), 213–217 (1999). https://doi.org/10.1016/S0925-4005(99)00260-9
Google Scholar
S. Cherian, R.K. Gupta, B.C. Mullin, T. Thundat, Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron. 19(5), 411–416 (2003). https://doi.org/10.1016/S0956-5663(03)00226-4
Article
Google Scholar
J. Pei, F. Tain, T. Thundat, Glucose biosensors based on the microcantilever. Anal. Chem. 26(2), 292–297 (2004). https://doi.org/10.1021/ac035048k
Article
Google Scholar
M. Calleja, M. Nordstom, M. Alvarez, J. Tamayo, L.M. Lechuga, A. Boisen, Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105(1), 215–222 (2005). https://doi.org/10.1016/j.ultramic.2005.06.039
Article
Google Scholar
J. Zhang, H.P. Lang, F. Huber, A. Bietsch, W. Grange et al., Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1(3), 214–220 (2006). https://doi.org/10.1038/nnano.2006.134
Article
Google Scholar
Y. Arntz, J.D. Seeling, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner, C.H. Gerber, Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1), 86–90 (2003). https://doi.org/10.1088/0957-4484/14/1/319
Article
Google Scholar
N. Bajwa, C.J. Maldonado, T. Thundat, A. Passian, Piezoresistive measurement of swine H1N1 hemagglutinin peptide binding with microcantilever arrays. AIP Adv. 4(3), 037118 (2014). https://doi.org/10.1063/1.4869636
Article
Google Scholar
H.P. Lang, M.K. Baller, R. Berger, C. Gerber, J.K. Gimzewski et al., An artificial nose based on a micromechanical cantilever array. Anal. Chim. Acta 393(1), 59–65 (1999). https://doi.org/10.1016/S0003-2670(99)00283-4
Article
Google Scholar
S. Xu, R. Mutharasan, Rapid and sensitive detection of giardia lamblia using a piezoelectric cantilever biosensor in finished and source waters. Environ. Sci. Technol. 44(5), 1736–1741 (2010). https://doi.org/10.1021/es9033843
Article
Google Scholar
L.S. Haung, Y. Pheanpanitporn, Y.K. Yen, K.F. Chang, L.Y. Lin, D.M. Lai, Detection of the antiepileptic drug phenytoin using a single free-standing piezoresistive cantilever for therapeutic drug monitoring. Biosens. Bioelectron. 59, 233–238 (2014). https://doi.org/10.1016/j.bios.2014.03.047
Article
Google Scholar
J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol, F.P. Murano, Micro/nanomechanical resonators for distributed mass sensing with capacitive detection. Microelectron. Eng. 83(4), 1216–1220 (2006). https://doi.org/10.1016/j.mee.2006.01.177
Article
Google Scholar
R. Lopez, J.M. Aguirregabiria, M. Tijero, M. Arroyo, J. Elizalde, J. Berganzo, K. Mayora, F.J. Blanco, A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip. Sens. Actuator B-Chem. 114(1), 542–551 (2006). https://doi.org/10.1016/j.snb.2005.05.011
Article
Google Scholar
J.A. Harley, T.W. Kenny, 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. J. Microelectromech. Syst. 9(2), 226–235 (2000). https://doi.org/10.1109/84.846703
Article
Google Scholar
S.M. Yang, T.I. Yin, C. Chang, A biosensor chip by CMOS process for surface stress measurement in bioanalyte. Sens. Actuator B-Chem. 123(2), 707–714 (2007). https://doi.org/10.1016/j.snb.2006.10.008
Article
Google Scholar
Y. Yang, Y. Chen, P. Xu, X. Li, Quad-cantilever microsensors with a low cost single -sided micro-machining technique for trace chemical vapor detection. Microelectron. Eng. 87(11), 2317–2322 (2010). https://doi.org/10.1016/j.mee.2010.03.010
Article
Google Scholar
H.J. Pandya, H.T. Kim, R. Roy, J.P. Desai, MEMS based low cost piezoresistive microcantilever force sensor and sensor module. Mater. Sci. Semicond. Process. 19, 163–173 (2014). https://doi.org/10.1016/j.mssp.2013.12.016
Article
Google Scholar
R. Yang, X. Huang, Z. Wang, Y. Zhou, L. Liu, A chemisorption-based microcantilever chemical sensor for the detection of trimethylamine. Sens. Actuator B-Chem. 145(1), 474–479 (2010). https://doi.org/10.1016/j.snb.2009.12.050
Article
Google Scholar
R.E. Fernandez, S. Stolyarova, A. Chadha, E. Bhattacharya, Y. Nemirovsky, MEMS composite porous silicon/polysilicon cantilever sensor for enhanced triglycerides biosensing. IEEE Sens. J. 9(12), 1660–1666 (2009). https://doi.org/10.1109/JSEN.2009.2030643
Article
Google Scholar
Y. Zhou, Z. Wang, C. Wang, W. Ruan, L. Liu, Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor. J. Micromech. Microeng. 19(6), 065026 (2009). https://doi.org/10.1088/0960-1317/19/6/065026
Article
Google Scholar
A. Loui, F.T. Goericke, T.V. Ratto, J. Lee, B.R. Hart, W.P. King, The effect of piezoresistive microcantilever geometry on the cantilever sensitivity during surface stress chemical sensing. Sens. Actuator A-Phys. 147(2), 516–521 (2008). https://doi.org/10.1016/j.sna.2008.06.016
Article
Google Scholar
Y. Kim, J.Y. Cha, H. Ham, H. Huh, D.S. So, I. Kang, Preparation of piezoresistive nano smart hybrid material based on graphene. Curr. Appl. Phys. 11(1), 350–352 (2011). https://doi.org/10.1016/j.cap.2010.11.022
Article
Google Scholar
R. Lakhmi, H. Debeda, I. Dufour, C. Lucat, Force sensors based on screen-printed cantilevers. IEEE Sens. J. 10(6), 1133–1137 (2010). https://doi.org/10.1109/JSEN.2010.2040387
Article
Google Scholar
P. Alpuim, V. Chu, J.P. Conde, Piezoresistive sensors on plastic substrates using doped microcrystalline silicon. IEEE Sens. J. 2(4), 336–341 (2002). https://doi.org/10.1109/JSEN.2002.804037
Article
Google Scholar
R. Katragadda, Z. Wang, W. Khalid, Y. Li, Y. Xu, Parylene cantilevers integrated with polycrystalline silicon piezoresistors for surface stress sensing. Appl. Phys. Lett. 91(8), 083505 (2007). https://doi.org/10.1063/1.2772189
Article
Google Scholar
K.R. Buchapudi, X. Huang, X. Ji, H.F. Yang, T. Thundat, Microcantilever biosensors for chemicals and bioorganisms. Analyst 136(8), 1539–1556 (2011). https://doi.org/10.1039/c0an01007c
Article
Google Scholar
K.M. Goeders, J.S. Colton, L.A. Bottomley, Microcantilevers: sensing chemical interactions via mechanical motion. Chem. Rev. 108(2), 522–542 (2008). https://doi.org/10.1021/cr0681041
Article
Google Scholar
A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74(3), 036101 (2011). https://doi.org/10.1088/0034-4885/74/3/036101
Article
Google Scholar
S. Sang, Y. Zhao, W. Zhang, P. Li, J. Hu, G. Li, Surface stress-based biosensors. Biosens. Bioelectron. 51, 124–135 (2014). https://doi.org/10.1016/j.bios.2013.07.033
Article
Google Scholar
M. Calleja, P.M. Kosaka, A.S. Paulo, J. Tamayo, Challenges for nanomechanical sensors in biological detection. Nanoscale 4(16), 4925–4938 (2012). https://doi.org/10.1039/c2nr31102j
Article
Google Scholar
D.W. Lee, X. Li, Integrated microcantilevers for high-resolution sensing and probing. Meas. Sci. Technol. 23(2), 022001 (2012). https://doi.org/10.1088/0957-0233/23/2/022001
Article
Google Scholar
J. Bausells, Piezoresistive cantilevers for nanomechanical sensing. Microelectron. Eng. 145, 9–20 (2015). https://doi.org/10.1016/j.mee.2015.02.010
Article
Google Scholar
H.F. Ji, B.D. Armon, Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. Anal. Chem. 82(5), 1634–1642 (2010). https://doi.org/10.1021/ac901955d
Article
Google Scholar
A. Sassolas, L.J. Blum, B.D.L. Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30(3), 489–511 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003
Article
Google Scholar
P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9), 14139–14194 (2014). https://doi.org/10.3390/molecules190914139
Article
Google Scholar
J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005). https://doi.org/10.1021/cr0300789
Article
Google Scholar
B.J. Kim, E. Meng, Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2015). https://doi.org/10.1088/0960-1317/26/1/013001
Article
Google Scholar
C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19(22), 3783–3790 (2007). https://doi.org/10.1002/adma.200701709
Article
Google Scholar
M. Nordstrom, S. Keller, M. Lillemose, A. Johansson, S. Dohn, D. Haefliger, G. Blagoi, M.H. Jakobsen, A. Boisen, SU-8 cantilevers for bio/chemical Sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8(3), 1595–1612 (2008). https://doi.org/10.3390/s8031595
Article
Google Scholar
V. Seena, P. Ray, P. Kovur, M. Kandpal, V.R. Rao, Polymer MEMS sensors, in Advanced biomaterials and biodevices, ed. by A. Tiwari, A.N. Nordin (Wiley, Hoboken, 2014). https://doi.org/10.1002/9781118774052.ch4
Google Scholar
H.S. Wasisto, S. Merzsch, E. Uhde, A. Waag, E. Peiner, Handheld personal airborne nanoparticle detector based on microelectromechanical silicon resonant cantilever. Microelectron. Eng. 145, 96–103 (2015). https://doi.org/10.1016/j.mee.2015.03.037
Article
Google Scholar
H.S. Wasisto, S. Merzsch, E. Uhde, A. Waag, E. Peiner, Partially integrated cantilever-based airborne nanoparticle detector for continuous carbon aerosol mass concentration monitoring. J. Sens. 4(1), 111–123 (2015). https://doi.org/10.5194/jsss-4-111-2015
Google Scholar
H.S. Wasisto, Q. Zhang, S. Merzsch, A. Waag, E. Peiner, A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors. Microsyst. Technol. 20(4–5), 559–569 (2014). https://doi.org/10.1007/s00542-013-1991-9
Article
Google Scholar
H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever. Sens. Actuator B-Chem. 180, 77–89 (2013). https://doi.org/10.1016/j.snb.2012.04.003
Article
Google Scholar
H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Evaluation of photoresist-based nanoparticle removal method for recycling silicon cantilever mass sensors. Sens. Actuator A-Phys. 202, 90–99 (2013). https://doi.org/10.1016/j.sna.2012.12.016
Article
Google Scholar
H.S. Wasisto, K. Huang, S. Merzsch, A. Stranz, A. Waag, E. Peiner, Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications. Microsyst. Technol. 20(4–5), 571–584 (2014). https://doi.org/10.1007/s00542-013-1992-8
Article
Google Scholar
S. Merzsch, F. Steib, H.S. Wasisto, A. Stranz, P. Hinze, T. Weimann, A. Waag, Production of vertical nanowire resonators by cryogenic-ICP–DRIE. Microsyst. Technol. 20(4–5), 759–767 (2014). https://doi.org/10.1007/s00542-013-2032-4
Article
Google Scholar
H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. Micro Nano Lett. 8(10), 554–558 (2013). https://doi.org/10.1049/mnl.2013.0208
Article
Google Scholar
H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens. Actuator B-Chem. 189, 146–156 (2013). https://doi.org/10.1016/j.snb.2013.02.053
Article
Google Scholar
H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon nanowire resonators: aerosol nanoparticle mass sensing in the workplace. IEEE Nanotechnol. Mag. 7(2), 18–23 (2013). https://doi.org/10.1109/MNANO.2013.2260462
Article
Google Scholar
H.S. Wasisto, S. Merzsch, F. Steib, A. Waag, E. Peiner, Vertical silicon nanowire array-patterned microcantilever resonators for enhanced detection of cigarette smoke aerosols. Micro Nano Lett. 9(10), 676–679 (2014). https://doi.org/10.1049/mnl.2014.0249
Article
Google Scholar
S. Keller, D. Haefliger, A. Boisen, Fabrication of thin SU-8 cantilevers: initial bending, release and time-stability. J. Micromech. Microeng. 20(4), 045024 (2010). https://doi.org/10.1088/0960-1317/20/4/045024
Article
Google Scholar
V. Seena, A. Fernandes, P. Pant, S. Mukherji, V.R. Rao, Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22(29), 295501 (2011). https://doi.org/10.1088/0957-4484/22/29/295501
Article
Google Scholar
A. Johansson, M. Calleja, P.A. Rasmussen, A. Boisen, SU-8 cantilever sensor system with integrated readout. Sens. Actuator A-Phys. 123–124, 111–115 (2005). https://doi.org/10.1016/j.sna.2005.03.025
Article
Google Scholar
A. Boisen, T. Thundat, Design & fabrication of cantilever array biosensors. Mater. Today 12, 32–38 (2009). https://doi.org/10.1016/S1369-7021(09)70249-4
Article
Google Scholar
J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-8517-9
Book
Google Scholar
N.A. Gilda, S. Nag, S. Patil, M.S. Baghini, D.K. Sharma, V.R. Rao, Current excitation method for ΔDelta R measurement in piezo-resistive sensors with a 0.3-ppm resolution. IEEE Trans. Instrum. Meas. 61(3), 767–774 (2012). https://doi.org/10.1109/TIM.2011.2172118
Article
Google Scholar
K.F. Anderson, The new current loop: an instrumentation and measurement circuit topology. IEEE Trans. Instrum. Meas. 46(5), 1061–1067 (1997). https://doi.org/10.1109/19.676711
Article
Google Scholar
Z. Wang, R. Yue, R. Zhang, L. Liu, Design and optimization of laminated piezoresistive microcantilever sensors. Sens. Actuator A-Phys. 120(2), 325–336 (2005). https://doi.org/10.1016/j.sna.2004.12.006
Article
Google Scholar
J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301–304 (2012). https://doi.org/10.1038/nnano.2012.42
Article
Google Scholar
J. Tamayo, A.D.L. Humphris, A.M. Malloy, M.J. Miles, Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86(1), 167–173 (2001). https://doi.org/10.1016/S0304-3991(00)00082-6
Article
Google Scholar
G. Dubourg, I. Dufour, C. Pellet, C. Ayela, Optimization of the performances of SU-8 organic microcantilever resonators by tuning the viscoelastic properties of the polymer. Sens. Actuator B-Chem. 169, 320–326 (2012). https://doi.org/10.1016/j.snb.2012.04.088
Article
Google Scholar
S. Schmid, P. Senn, C. Hierold, Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sens. Actuator A-Phys. 145–146, 442–448 (2008). https://doi.org/10.1016/j.sna.2008.01.010
Article
Google Scholar
K.W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, T.S. Kim, Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing microcantilever. Biosens. Bioelectron. 20(10), 1932–1938 (2005). https://doi.org/10.1016/j.bios.2004.09.023
Article
Google Scholar
D. Lee, S. Kim, N. Jung, T. Thundat, S. Jeon, Effect of gold patterning on the bending profile and frequency response of a microcantilever. J. Appl. Phys. 106(2), 024310 (2009). https://doi.org/10.1063/1.3177326
Article
Google Scholar
J. Tamayo, D. Ramos, J. Mertens, M. Calleja, Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 89(22), 224104 (2006). https://doi.org/10.1063/1.2388925
Article
Google Scholar
D. Ramos, M.A. Hernandez, E.G. Santos, H.D. Tong, C.V. Rijn, M. Calleja, J. Tamayo, Arrays of dual nanomechanical resonators for selective biological detection. Anal. Chem. 81(6), 2274–2279 (2009). https://doi.org/10.1021/ac8024152
Article
Google Scholar
G.G. Stoney, The tension of metallic film deposited by electrolysis. Proc. R. Soc. A-Math. Phys. Eng. 82(553), 172–175 (1909). https://doi.org/10.1098/rspa.1909.0021
Article
Google Scholar
J.E. Sader, Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: rectangular plates. J. Appl. Phys. 89(5), 2911–2921 (2001). https://doi.org/10.1063/1.1342018
Article
Google Scholar
M. Godin, C.V. Tabard, P. Grutter, P. Williams, Quantitative surface stress measurements using a microcantilever. Appl. Phys. Lett. 79(4), 551 (2001). https://doi.org/10.1063/1.1387262
Article
Google Scholar
J. Tamayo, J.J. Ruz, V. Pini, P. Kosaka, M. Calleja, Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012). https://doi.org/10.1088/0957-4484/23/47/475702
Article
Google Scholar
J. Zang, F. Liu, Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology 18(40), 405501 (2007). https://doi.org/10.1088/0957-4484/18/40/405501
Article
Google Scholar
J. Thaysen, A.D. Yalcinkaya, P. Vettiger, A. Menon, J. Thaysen, Polymer-based stress sensor with integrated readout. J. Phys. D-Appl. Phys. 35(21), 2698–2703 (2002). https://doi.org/10.1088/0022-3727/35/21/302
Article
Google Scholar
J. Fritz, M.K. Baller, H.P. Lang, H. Routhuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski, Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000). https://doi.org/10.1126/science.288.5464.316
Article
Google Scholar
M.Z. Ansari, C. Cho, U. Gerald, Stepped piezoresistive microcantilever designs for biosensors. J. Phys. D-Appl. Phys. 45(21), 215401 (2012). https://doi.org/10.1088/0022-3727/45/21/215401
Article
Google Scholar
R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, R. Gomez, On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10(4), 483–491 (2000). https://doi.org/10.1088/0960-1317/10/4/301
Article
Google Scholar
K.A.A. Wahid, H.W. Lee, M.A. Shazni, I.A. Azid, Investigation on the effect of different design of SCR on the change of resistance in piezoresistive micro cantilever. Microsyst. Technol. 20(6), 1079–1083 (2014). https://doi.org/10.1007/s00542-013-1784-1
Article
Google Scholar
M.Z. Ansari, C. Cho, W. Choi, M. Lee, S. Lee, J. Kim, Improving sensitivity of piezoresistive microcantilever biosensors using stress concentration region designs. J. Phys. D-Appl. Phys. 46(50), 505501 (2013). https://doi.org/10.1088/0022-3727/46/50/505501
Article
Google Scholar
J.W. Gibbs, The scientific papers of J. Willard Gibbs, vol. 1 (Green and Company, Longmans, 1906), p. 55
Google Scholar
G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, A. Majumdar, Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 98(4), 1560–1564 (2001). https://doi.org/10.1073/pnas.98.4.1560
Article
Google Scholar
R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner et al., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl. Acad. Sci. USA 99(15), 9783–9788 (2002). https://doi.org/10.1073/pnas.152330199
Article
Google Scholar
M. Watari, J. Galbraith, H.P. Lang, M. Sousa, M. Hegner, C. Gerber, M.A. Horton, R.A. McKendry, Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129(3), 601–609 (2007). https://doi.org/10.1021/ja065222x
Article
Google Scholar
J.C. Stachowiak, M. Yue, K. Castelino, A. Chakraborty, A. Majumdar, Chemomechanics of surface stresses induced by DNA hybridization. Langmuir 22(1), 263–268 (2006). https://doi.org/10.1021/la0521645
Article
Google Scholar
J. Mertens, C. Rogero, M. Calleja, D. Ramos, J.M.G. Angel, C. Briones, J. Tamayo, Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat. Nanotechnol. 3(5), 301–307 (2008). https://doi.org/10.1038/nnano.2008.91
Article
Google Scholar
M. Godin, T.C. Vincent, Y. Miyahara, T. Monga, P.J. Williams, L.Y. Beaulieu, R.B. Lennox, P. Grutter, Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology 21(7), 075501 (2010). https://doi.org/10.1088/0957-4484/21/7/075501
Article
Google Scholar
T. Yang, X. Li, Y. Chen, D.W. Lee, G. Zuo, Adsorption induced surface-stress sensing signal originating from both vertical interface effects and intermolecular lateral interactions. Analyst 136(24), 5261–5269 (2011). https://doi.org/10.1039/c1an15695k
Article
Google Scholar
M. Joshi, R. Pinto, V.R. Rao, S. Mukherji, Silanization and antibody immobilization on SU-8. Appl. Surf. Sci. 253(6), 3127–3132 (2007). https://doi.org/10.1016/j.apsusc.2006.07.017
Article
Google Scholar
A. Deepu, V.V.R. Sai, S. Mukherji, Simple surface modification techniques for immobilization of biomolecules on SU-8. J. Mater. Sci.-Mater. Med. 20(1), 25–28 (2009). https://doi.org/10.1007/s10856-008-3471-9
Article
Google Scholar
S.L. Tao, C.P. Ketul, J.J. Norman, T.A. Desai, Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir 24(6), 2631–2636 (2008). https://doi.org/10.1021/la703066z
Article
Google Scholar
N. Iranpoor, P. Salehi, Ceric ammonium nitrate: a mild and efficient reagent for conversion of epoxides to β-nitrato alcohols. Tetrahedron 51(3), 909–912 (1995). https://doi.org/10.1016/0040-4020(94)00979-5
Article
Google Scholar
Y. Wang, J.H. Pai, H.H. Lai, C.E. Sims, M. Bachman, G.P. Li, N.L. Allbritton, Surface graft polymerization of SU-8 for bio-MEMS applications. J. Micromech. Microeng. 17(7), 1371–1380 (2007). https://doi.org/10.1088/0960-1317/17/7/020
Article
Google Scholar
R. Marie, S. Schmid, A. Johansson, L. Ejsing, M. Nordström, D. Häfliger, C.B. Christensen, A. Boisen, M. Dufva, Immobilisation of DNA to polymerised SU-8 photoresist. Biosens. Bioelectron. 21(7), 1327–1332 (2006). https://doi.org/10.1016/j.bios.2005.03.004
Article
Google Scholar
A.A. Meyer-Plath, K. Schröder, B. Finke, A. Ohl, Current trends in biomaterial surface functionalization—nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71(3), 391–406 (2003). https://doi.org/10.1016/S0042-207X(02)00766-2
Article
Google Scholar
Z. Gao, D.B. Henthorn, C.S. Kim, Surface modification of SU-8 by photografting of functional polymers for lab-on-a-chip applications, in IEEE Conference on Sensors (2007), pp. 121–123. https://doi.org/10.1109/ICSENS.2007.355733
M. Joshi, N. Kale, R. Lal, V.R. Rao, S. Mukherji, A novel dry method for surface modification of SU-8 for immobilization of biomolecules in bio-MEMS. Biosens. Bioelectron. 22(11), 2429–2435 (2007). https://doi.org/10.1016/j.bios.2006.08.045
Article
Google Scholar
G. Blagoi, S. Keller, A. Johansson, A. Boisen, M. Dufva, Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl. Surf. Sci. 255(5), 2896–2902 (2008). https://doi.org/10.1016/j.apsusc.2008.08.089
Article
Google Scholar
C. Cao, S.W. Birtwell, J. Høgberg, A. Wolff, H. Morgan, D.D. Bang, Surface modification of photoresist SU8 for low autofluorescence and bioanalytical applications, in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Seattle, Washington, USA, 2011), pp. 1161–1163. (http://eprints.soton.ac.uk/id/eprint/356607
R. Raiteri, M. Grattarola, H.J. Butt, P. Skládal, P, Micromechanical cantilever-based biosensors. Sens. Actuator B-Chem. 79(2), 115–126 (2001). https://doi.org/10.1016/S0925-4005(01)00856-5
Article
Google Scholar
W. Ruan, Y. Li, Z. Tan, L. Liu, K. Jiang, Z. Wang, In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens. Actuator B-Chem. 176, 141–148 (2013). https://doi.org/10.1016/j.snb.2012.10.026
Article
Google Scholar
G. Binning, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986). https://doi.org/10.1103/PhysRevLett.56.930
Article
Google Scholar
T. Thundat, R.J. Warmack, D.P. Allison, L.A. Bottomley, A.J. Lourenco, T.L. Ferrell, Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: the effect of humidity on apparent width and image contrast. J. Vac. Sci. Technol. A 10, 630–635 (1992). https://doi.org/10.1116/1.577700
Article
Google Scholar
T. Thundat, D.P. Allison, R.J. Warmack, T.L. Ferrell, Imaging isolated strands of DNA molecules by atomic force microscopy. Ultramicroscopy 42–44, 1101–1106 (1992). https://doi.org/10.1016/0304-3991(92)90409-D
Article
Google Scholar
L.A. Bottomley, J.N. Haseltine, D.P. Allison, R.J. Warmack, T. Thundat et al., Scanning tunneling microscopy of DNA: the chemical modification of gold surfaces for immobilization of DNA. J. Vac. Sci. Technol. A 10, 591–595 (1992). https://doi.org/10.1116/1.577735
Article
Google Scholar
D.P. Allison, L.A. Bottomley, T. Thundat, G.M. Brown, R.P. Woychik, J.J. Schrick, K. Bruce Jacobson, R.J. Warmack, Immobilization of DNA for scanning probe microscopy. Proc. Natl. Acad. Sci. USA 89(21), 10129–10133 (1992). https://doi.org/10.1073/pnas.89.21.10129
Article
Google Scholar
T. Thundat, D.P. Allison, R.J. Warmack, M.J. Doktycz, K. Bruce Jacobson, G.M. Brown, Atomic force microscopy of single-and double-stranded deoxyribonucleic acid. J. Vac. Sci. Technol. A 11(4), 824–828 (1993). https://doi.org/10.1116/1.578312
Article
Google Scholar
J.K. Gimzewski, Ch. Gerber, E. Meyer, R.R. Schlittler, Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett. 217(5–6), 589–594 (1994). https://doi.org/10.1016/0009-2614(93)E1419-H
Article
Google Scholar
J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O’shea, M.E. Welland, T. Rayment, J.K. Gimzewski, Ch. Gerber, A femtojoule calorimeter using micromechanical sensors. Rev. Sci. Instrum. 65(12), 3793–3798 (1994). https://doi.org/10.1063/1.1144509
Article
Google Scholar
T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison, Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl. Phys. Lett. 64(21), 2894–2896 (1994). https://doi.org/10.1063/1.111407
Article
Google Scholar
T. Thundat, E.A. Wachter, S.L. Sharp, R.J. Warmack, Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 66(13), 1695–1697 (1995). https://doi.org/10.1063/1.113896
Article
Google Scholar
R. Raiteri, H.J. Butt, Measuring electrochemically induced surface stress with an atomic force microscope. J. Phys. Chem. 99(43), 15728–15732 (1995). https://doi.org/10.1021/j100043a008
Article
Google Scholar
H.J. Butt, A sensitive method to measure changes in the surface stress of solids. J. Colloid Interface Sci. 180(1), 251–260 (1996). https://doi.org/10.1006/jcis.1996.0297
Article
Google Scholar
G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate, Atomic resolution with atomic force microscope. Surf. Sci. 189–190, 1–6 (1987). https://doi.org/10.1016/S0039-6028(87)80407-7
Article
Google Scholar
G.Y. Chen, T. Thundat, E.A. Wachter, R.J. Warmack, Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77(8), 3618–3622 (1995). https://doi.org/10.1063/1.359562
Article
Google Scholar
M. Tortonese, H. Yamada, R.C. Barrett, C.F. Quate, Atomic force microscopy using a piezoresistive cantilever, in Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS’91 (1991), pp. 448–451. https://doi.org/10.1109/SENSOR.1991.148908
S.J. Kim, T. Ono, M. Esashi, Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit. Appl. Phys. Lett. 88, 053116 (2006). https://doi.org/10.1063/1.2171650
Article
Google Scholar
J.H. Lee, K.S. Hwang, J. Park, K.H. Yoon, D.S. Yoon, T.S. Kim, Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20(10), 2157–2162 (2005). https://doi.org/10.1016/j.bios.2004.09.024
Article
Google Scholar
D.V. Scheible, A. Erbe, R.H. Blick, Tunable coupled nanomechanical resonators for single-electron transport. New J. Phys. 4(1), 86 (2002). https://doi.org/10.1088/1367-2630/4/1/386
Article
Google Scholar
M. Nordström, D.A. Zauner, M. Calleja, J. Hübner, A. Boisen, Integrated optical readout for miniaturization of cantilever-based sensor system. Appl. Phys. Lett. 91(10), 103512 (2007). https://doi.org/10.1063/1.2779851
Article
Google Scholar
R. Berger, H.P. Lang, C. Gerber, J.K. Gimzewski, J.H. Fabian, L. Scandella, E. Meyer, H.J. Güntherodt, Micromechanical thermogravimetry. Chem. Phys. Lett. 294(4), 363–369 (1998). https://doi.org/10.1016/S0009-2614(98)00817-3
Article
Google Scholar
H. Jensenius, J. Thaysen, A.A. Rasmussen, L.H. Veje, O. Hansen, A. Boisen, A microcantilever-based alcohol vapor sensor-application and response model. Appl. Phys. Lett. 76(18), 2615–2617 (2000). https://doi.org/10.1063/1.126426
Article
Google Scholar
A. Boisen, J. Thaysen, H. Jensenius, O. Hansen, Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy 82(1), 11–16 (2000). https://doi.org/10.1016/S0304-3991(99)00148-5
Article
Google Scholar
A.G. Hansen, M.W. Mortensen, J.E.T. Andersen, J. Ulstrup, A. Kühle, J. Garnæs, A. Boisen, Stress formation during self-assembly of alkanethiols on differently pre-treated gold surfaces. Probe Microscopy 2(2), 139–149 (2001)
Google Scholar
G. Villanueva, J.A. Plaza, J. Montserrat, F.P. Murano, J. Bausells, Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces. Microelectron. Eng. 86(5–6), 1120–1123 (2008). https://doi.org/10.1016/j.mee.2008.01.082
Article
Google Scholar
J.C. Doll, S.J. Park, B.L. Pruitt, Design optimization of piezoresistive cantilevers for force sensing in air and water. J. Appl. Phys. 106(6), 064310 (2009). https://doi.org/10.1063/1.3224965
Article
Google Scholar
S.J. Park, J.C. Doll, B.L. Pruitt, Piezoresistive cantilever performance—part I: analytical model for sensitivity. J. Microelectromech. Syst. 19(1), 137–148 (2010). https://doi.org/10.1109/JMEMS.2009.2036581
Article
Google Scholar
S.J. Park, J.C. Doll, A. Rastegar, B.L. Pruitt, Piezoresistive cantilever performance—part II: optimization. J. Microelectromech. Syst. 19(1), 149–161 (2010). https://doi.org/10.1109/JMEMS.2009.2036582
Article
Google Scholar
G. Tosolini, G. Villanueva, F.P. Murano, J. Bausells, Silicon microcantilevers with MOSFET detection. Microelectron. Eng. 87(5), 1245–1247 (2010). https://doi.org/10.1016/j.mee.2009.11.125
Article
Google Scholar
B. Komati, J. Agnus, C. Clévy, P. Lutz, Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications. J. Micromech. Microeng. 24(3), 035018 (2014). https://doi.org/10.1088/0960-1317/24/3/035018
Article
Google Scholar
S.J. Hyun, H.S. Kim, Y.J. Kim, H.I. Jung, Mechanical detection of liposomes using piezoresistive cantilever. Sens. Actuator B-Chem. 117(2), 415–419 (2006). https://doi.org/10.1016/j.snb.2005.11.054
Article
Google Scholar
P.A. Rasmussen, J. Thaysen, O. Hansen, S.C. Eriksen, A. Boisen, Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97(1), 371–376 (2003). https://doi.org/10.1016/S0304-3991(03)00063-9
Article
Google Scholar
A. Venkatasubramanian, J.H. Lee, V. Stavila, A. Robinson, M.D. Allendorf, P.J. Hesketh, MOF@ MEMS: design optimization for high sensitivity chemical detection. Sens. Actuator B-Chem. 168, 256–262 (2012). https://doi.org/10.1016/j.snb.2012.04.019
Article
Google Scholar
C.P. Cheney, B. Srijanto, D.L. Hedden, A. Gehl, T.L. Ferrell, J. Schultz, E.A. Engleman, W.J. McBride, S. O’Connor, In vivo wireless ethanol vapor detection in the Wistar rat. Sens. Actuator B-Chem. 138(1), 264–269 (2009). https://doi.org/10.1016/j.snb.2009.01.052
Article
Google Scholar
M.Z. Ansari, C. Cho, A conduction–convection model for self-heating in piezoresistive microcantilever biosensors. Sens. Actuator A-Phys. 175, 19–27 (2012). https://doi.org/10.1016/j.sna.2011.12.014
Article
Google Scholar
G. Zuo, X. Li, P. Li, T. Yang, Y. Wang, Z. Cheng, S. Feng, Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Anal. Chim. Acta 580(2), 123–127 (2006). https://doi.org/10.1016/j.aca.2006.07.071
Article
Google Scholar
S.M. Yang, T.I. Yin, Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor. Sens. Actuator B-Chem. 120(2), 736–744 (2007). https://doi.org/10.1016/j.snb.2006.03.053
Article
Google Scholar
S.M. Yang, C. Chang, T.I. Yin, P.L. Kuo, DNA hybridization measurement by self-sensing piezoresistive microcantilevers in CMOS biosensor. Sens. Actuator B-Chem. 130(2), 674–681 (2008). https://doi.org/10.1016/j.snb.2007.10.072
Article
Google Scholar
C.W. Huang, H.T. Hsueh, Y.J. Huang, H.H. Liao, H.H. Tsai, Y.Z. Juang, T.H. Lin, S.S. Lu, C.T. Lin, A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sens. Actuator B-Chem. 181, 867–873 (2013). https://doi.org/10.1016/j.snb.2013.02.061
Article
Google Scholar
Y. Chen, P. Xu, M. Liu, X. Li, Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors. Microelectron. Eng. 87(12), 2468–2474 (2010). https://doi.org/10.1016/j.mee.2010.05.001
Article
Google Scholar
M.Z. Ansari, C. Cho, On self-heating in piezoresistive microcantilevers with short piezoresistor. J. Phys. D-Appl. Phys. 44(28), 285402 (2011). https://doi.org/10.1088/0022-3727/44/28/285402
Article
Google Scholar
R. Pechmann, J.M. Kohler, W. Fritzsche, A. Schaper, T.M. Jovin, The Novolever: a new cantilever for scanning force microscopy microfabricated from polymeric materials. Rev. Sci. Instrum. 65(12), 3702–3706 (1994). https://doi.org/10.1063/1.1144495
Article
Google Scholar
T.J. Yao, X. Yang, Y.C. Tai, Br F3 dry release technology for large freestanding parylene microstructures and electrostatic actuators. Sens. Actuator A-Phys. 97–98, 771–775 (2002). https://doi.org/10.1016/S0924-4247(02)00019-5
Article
Google Scholar
A.W. McFarland, J.S. Colton, Chemical sensing with micromolded plastic microcantilevers. J. Microelectromech. Syst. 14(6), 1375–1385 (2005). https://doi.org/10.1109/JMEMS.2005.851853
Article
Google Scholar
L.P. Lee, S.A. Berger, D. Liepmann, B.L. Pruitt, High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography. Sens. Actuator A-Phys. 71(1), 144–149 (1998). https://doi.org/10.1016/S0924-4247(98)00177-0
Article
Google Scholar
M. Calleja, J. Tamayo, M. Nordstrom, A. Boisen, Low-noise polymeric nanomechanical biosensors. Appl. Phys. Lett. 88(11), 113901 (2006). https://doi.org/10.1063/1.2187437
Article
Google Scholar
X.R. Zhang, X. Xu, Development of a biosensor based on laser-fabricated polymer microcantilevers. Appl. Phys. Lett. 85(12), 2423–2425 (2004). https://doi.org/10.1063/1.1791731
Article
Google Scholar
A. Gaitas, Y.B. Gianchandani, An experimental study of the contact mode AFM scanning capability of polyimide cantilever probes. Ultramicroscopy 106(8), 874–880 (2006). https://doi.org/10.1016/j.ultramic.2005.12.021
Article
Google Scholar
A. Greve, S. Keller, A.L. Vig, A. Kristensen, D. Larsson et al., Thermoplastic microcantilevers fabricated by nanoimprint lithography. J. Micromech. Microeng. 20(1), 015009 (2010). https://doi.org/10.1088/0960-1317/20/1/015009
Article
Google Scholar
A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers. Nanotechnology 15(11), 1628–1632 (2004). https://doi.org/10.1088/0957-4484/15/11/044
Article
Google Scholar
G. Firpo, E. Angeli, L. Repetto, U. Valbusa, Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J. Membr. Sci. 481, 1–8 (2015). https://doi.org/10.1016/j.memsci.2014.12.043
Article
Google Scholar
R. Zhu, T. Hoshi, Y. Chishima, Y. Muroga, T. Hagiwara, S. Yano, T. Sawaguchi, Microstructure and mechanical properties of polypropylene/poly (methyl methacrylate) nanocomposite prepared using supercritical carbon dioxide. Macromolecules 44(15), 6103–6112 (2011). https://doi.org/10.1021/ma2001965
Article
Google Scholar
P.J. Chen, D.C. Rodger, M.S. Humayun, Y.C. Tai, Floating-disk parylene microvalves for self-pressure-regulating flow controls. J. Microelectromech. Syst. 17(6), 1352–1361 (2008). https://doi.org/10.1109/JMEMS.2008.2004947
Article
Google Scholar
Y.S. Suzuki, Y.C. Tai, Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers. J. Microelectromech. Syst. 15(5), 1364–1370 (2006). https://doi.org/10.1109/JMEMS.2006.879706
Article
Google Scholar
J. Xie, J. Shih, Q. Lin, B. Yang, Y.C. Tai, Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4(5), 495–501 (2004). https://doi.org/10.1039/b403906h
Article
Google Scholar
A.A. Gómez, E. Tomas, Air-coupled piezoelectric transducers with active polypropylene foam matching layers. Sensors 13(5), 5996–6013 (2013). https://doi.org/10.3390/s130505996
Article
Google Scholar
J. Hillenbrand, G.M. Sessler, DC-Biased piezoelectret film transducers for airborne ultrasound. Ferroelectrics 472(1), 77–89 (2014). https://doi.org/10.1080/00150193.2014.964598
Article
Google Scholar
C.E. Garner, S.B. Gabriel, Y.S. Kuo, Directed ion beam sputter etching of polytetrafluoroethylene (Teflon) using an argon ion source. Thin Solid Films 95(4), 351–362 (1982). https://doi.org/10.1016/0040-6090(82)90041-4
Article
Google Scholar
E. Sahlin, A.T. Beisler, S.J. Woltman, S.G. Weber, Fabrication of microchannel structures in fluorinated ethylene propylene. Anal. Chem. 74(17), 4566–4569 (2002). https://doi.org/10.1021/ac025622c
Article
Google Scholar
K.Y. Kwon, X. Bi, W. Li, Droplet backside exposure for making slanted SU-8 microneedles, in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013), pp. 767–770 https://doi.org/10.1109/EMBC.2013.6609613
P.C. Wang, S.J. Paik, S. Chen, S. Rajaraman, S.H. Kim, M.G. Allen, Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J. Microelectromech. Syst. 22(5), 1041–1053 (2013). https://doi.org/10.1109/JMEMS.2013.2262587
Article
Google Scholar
M.W. Royal, N.M. Jokerst, R.B. Fair, Droplet-based sensing: optical microresonator sensors embedded in digital electrowetting microfluidics systems. IEEE Sens. J. 13(12), 4733–4742 (2013). https://doi.org/10.1109/JSEN.2013.2273828
Article
Google Scholar
M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, J. Brugger, Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 28(8), 735–742 (2005). https://doi.org/10.1111/j.1460-2695.2005.00873.x
Article
Google Scholar
P. Liu, L. Liu, K. Jiang, S. Fan, Carbon- nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 7(6), 732–736 (2011). https://doi.org/10.1002/smll.201001662
Article
Google Scholar
J. Kim, X. Xu, Excimer laser fabrication of polymer microfluidic devices. J. Laser Appl. 15(4), 255–260 (2003). https://doi.org/10.2351/1.1585085
Article
Google Scholar
R. Kilaru, Z.Ç. Butler, D.P. Butler, I.E. Gönenli, NiCr MEMS tactile sensors embedded in polyimide toward smart skin. J. Microelectromech. Syst. 22(2), 349–355 (2013). https://doi.org/10.1109/JMEMS.2012.2222867
Article
Google Scholar
J. Engel, J. Chen, C. Liu, Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 13(3), 359–366 (2003). https://doi.org/10.1088/0960-1317/13/3/302
Article
Google Scholar
K.S. Choi, D.S. Kim, H.J. Yang, M.S. Ryu, S.P. Chang, A highly sensitive humidity sensor with a novel hole array structure using a polyimide sensing layer. RSC Adv. 4(61), 32075–32080 (2014). https://doi.org/10.1039/C4RA02692F
Article
Google Scholar
S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 19(10), 1309–1318 (2004). https://doi.org/10.1016/j.bios.2003.11.021
Article
Google Scholar
M. Dan, Johansen, Investigation of Topas
® for Use in Optical Components (Master’s thesis, Technical University of Denmark, DTU, Denmark, 2005)
R.K. Jena, C.Y. Yue, Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6(1), 012822 (2012). https://doi.org/10.1063/1.3682098
Article
Google Scholar
N. Klejwa, R.G. Hennessy, J.W. Chen, R.T. Howe, A reel-to-reel compatible printed accelerometer, in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 699–702. https://doi.org/10.1109/TRANSDUCERS.2011.5969203
T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002). https://doi.org/10.1126/science.1076996
Article
Google Scholar
M. Khoo, C. Liu, Micro magnetic silicone elastomer membrane actuator. Sens. Actuator A-Phys. 89(3), 259–266 (2001). https://doi.org/10.1016/S0924-4247(00)00559-8
Article
Google Scholar
K. Hosokawa, K. Hanada, R. Maeda, A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices. J. Micromech. Microeng. 12(1), 1–6 (2001). https://doi.org/10.1088/0960-1317/12/1/301
Article
Google Scholar
N. Sundararajan, M.S. Pio, L.P. Lee, A.A. Berlin, Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J. Microelectromech. Syst. 13(4), 559–567 (2004). https://doi.org/10.1109/JMEMS.2004.832196
Article
Google Scholar
G.B. Lee, S.H. Chen, G.R. Huang, W.C. Sung, Y.H. Lin, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuator B-Chem. 75(1), 142–148 (2001). https://doi.org/10.1016/S0925-4005(00)00745-0
Article
Google Scholar
H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuator A-Phys. 83(1), 130–135 (2000). https://doi.org/10.1016/S0924-4247(00)00296-X
Article
Google Scholar
L.J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron. Eng. 54(3), 229–245 (2000). https://doi.org/10.1016/S0167-9317(00)00414-7
Article
Google Scholar
V. Seena, A. Rajorya, P. Pant, S. Mukherji, V.R. Rao, Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection. Solid State Sci. 11(9), 1606–1611 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.009
Article
Google Scholar
R. Mathew, A.R. Sankar, Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications. J. Phys. D-Appl. Phys. 48(20), 205402 (2015). https://doi.org/10.1088/0022-3727/48/20/205402
Article
Google Scholar
M. Joshi, P.S. Gandhi, R. Lal, V.R. Rao, S. Mukherji, Modelling, simulation and design guidelines for piezoresistive affinity cantilevers. J. Microelectromech. Syst. 20(3), 774–784 (2011). https://doi.org/10.1109/JMEMS.2011.2140353
Article
Google Scholar
P. Ray, S. Pandey, V.R. Rao, Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications. J. Appl. Phys. 116(12), 124902 (2014). https://doi.org/10.1063/1.4896255
Article
Google Scholar
J.D. Adams, B.W. Erickson, J. Grossenbacher, J. Brugger, A. Nievergelt, G.E. Fantner, Harnessing the damping properties of materials for high-speed atomic force microscopy. Nat. Nanotechnol. 11(2), 147–151 (2016). https://doi.org/10.1038/nnano.2015.254
Article
Google Scholar
N. Mishra, B. Krishna, R. Singh, K. Das, Evaluation of effective elastic, piezoelectric, and dielectric properties of SU8/ZnO nanocomposite for vertically integrated nanogenerators using finite element method. J. Nanomater. 2017, 1924651 (2017). https://doi.org/10.1155/2017/1924651
Article
Google Scholar
M. Vinchurkar, A. Joshi, V.R. Rao, Carbon black nanocomposite piezoresistive microcantilevers with reduced percolation threshold, in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (2015), pp. 689–692. https://doi.org/10.1109/EDSSC.2015.7285210
Y.C. Lim, A.Z. Kouzani, A. Kaynak, X.J. Dai, G. Littlefair, W. Duan, A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor. Microsyst. Technol. 21(2), 371–380 (2015). https://doi.org/10.1007/s00542-013-2019-1
Article
Google Scholar
Z. Mao, K. Yoshida, J.W. Kim, Study on the fabrication of a SU-8 cantilever vertically-allocated in a closed fluidic microchannel. Microsyst. Technol. 1–11 (2017). https://doi.org/10.1007/s00542-017-3611-6
C.D. Gerardo, E. Cretu, R. Rohling, Fabrication of circuits on flexible substrates using conductive SU-8 for sensing applications. Sensors 17(6), 1420 (2017). https://doi.org/10.3390/s17061420
Article
Google Scholar
C. Ge, E. Cretu, MEMS transducers low-cost fabrication using SU-8 in a sacrificial layer-free process. J. Micromech. Microeng. 27(4), 045002 (2017). https://doi.org/10.1088/1361-6439/aa5dfb
Article
Google Scholar
T.R. Naik, S. Pandey, V. Palaparthy, R. Shelar, V.R. Rao, M. Ravikanth, Vapor-phase self-assembled monolayer on SU-8 cantilever for explosive sensing, in Nanoelectronics Conference (INEC) (2016), pp. 1–2. https://doi.org/10.1109/INEC.2016.7589293
M. Bisen, M.Z. Ansari, Phenomenological modelling sensitivity of SU8/CB nanocomposite conducting polymer microcantilever biosensor. Mater. Today 4(9), 10395–10399 (2017). https://doi.org/10.1016/j.matpr.2017.06.387
Article
Google Scholar
G. Sapra, P. Sharma, Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL. Pramana-J. Phys. 89(1), 10 (2017). https://doi.org/10.1007/s12043-017-1398-8
Article
Google Scholar
K.G. Girija, I. Tushir, R.K. Vatsa, A. Topkar, Design, simulation and fabrication of piezoresistive microcantilevers using standard multi user MEMS process. ISSS J. Micro Smart Syst. 6(1), 83–89 (2017). https://doi.org/10.1007/s41683-017-0008-9
Article
Google Scholar
G. Sapra, M. Sharma, P. Sharma, S. Prasad, Design of MEMS based MWCNT/epoxy strain sensor using ANSYS, in 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp.1–3. https://doi.org/10.1109/RAECS.2015.7453383
A. Toor, H. So, A.P. Pisano, Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites. Appl. Surf. Sci. 414, 373–379 (2017). https://doi.org/10.1016/j.apsusc.2017.04.096
Article
Google Scholar
N. Tiwary, M. Vinchurkar, M. Patel, R. Nathawat, S. Pandey, V.R. Rao, Fabrication, characterization and application of ZnO nanostructure-based micro-preconcentrator for TNT sensing. J. Microelectromech. Syst. 25(5), 968–975 (2016). https://doi.org/10.1109/JMEMS.2016.2600631
Article
Google Scholar
S. Nayak, S.K. Behura, B.P. Singh, S. Bhattacharjee, Flexible polymer-multiwall carbon nanotubes composite developed by in situ polymerization technique. Polym. Compos. 37(9), 2860–2870 (2016). https://doi.org/10.1002/pc.23483
Article
Google Scholar
L.H. Tam, C.L. Chow, D. Lau, Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach. Nanotechnology 29(2), 024001 (2017). https://doi.org/10.1088/1361-6528/aa9537
Article
Google Scholar
N. Maheshwari, G. Chatterjee, M. Vinchurkar, G. Gupta, H. Kshirsagar, K.L. Narsimhan, V.R. Rao, Parylene-C encapsulation for polymeric cantilever stability, in Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (2015), pp.1–5. https://doi.org/10.1109/DTIP.2015.7161032
R. Mathew, A.R. Sankar, In-silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors. AIP Adv. 7, 035108 (2017). https://doi.org/10.1063/1.4977827
Article
Google Scholar
R. Mathew, A.R. Sankar, Piezoresistive composite silicon dioxide nanocantilever surface stress sensor: design and optimization. J. Nanosci. Nanotechnol. 18(5), 3387–3397 (2018). https://doi.org/10.1166/jnn.2018.14642
Article
Google Scholar
R. Feng, R. Farris, Influence of processing conditions on the thermal and mechanical properties of SU-8 negative photoresist coating. J. Micromech. Microeng. 13(1), 80–88 (2003). https://doi.org/10.1088/0960-1317/13/1/312
Article
Google Scholar
J.A.V. Kan, P.G. Shao, K. Ansari, A.A. Bettiol, T. Osipowicz, F. Watt, Proton beam writing: a tool for high-aspect ratio mask production. Microsyst. Technol. 13(5–6), 431–434 (2007). https://doi.org/10.1007/s00542-006-0192-1
Article
Google Scholar
S. Keller, Fabrication of an Autonomous Surface Stress Sensor with the Polymer SU-8 (Ph. D. thesis, 2008)
M. Lillemose, Piezoresistive Polymer Composites for Cantilever Readout (Ph. D. thesis, 2008). http://orbit.dtu.dk/files/5253544/Lillemose.pdf
N.T. Nguyen, T.Q. Truong, A fully polymeric micropump with piezoelectric actuator. Sens. Actuator B-Chem. 97(1), 137–143 (2004). https://doi.org/10.1016/S0925-4005(03)00521-5
Article
Google Scholar
V. Seidemann, S. Bütefisch, S. Büttgenbach, Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sens. Actuator A-Phys. 97, 457–461 (2002). https://doi.org/10.1016/S0924-4247(01)00829-9
Article
Google Scholar
H. Lorenz, M. Laudon, P. Renaud, Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron. Eng. 41, 371–374 (1998). https://doi.org/10.1016/S0167-9317(98)00086-0
Article
Google Scholar
H. Lorenz, M. Despont, P. Vettiger, P. Renaud, Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist. Microsyst. Technol. 4(3), 143–146 (1998). https://doi.org/10.1007/s005420050118
Article
Google Scholar
R. Yang, S.A. Soper, W. Wang, Fabrication of out-of-plane refractive concave and convex microlens arrays. Proc. SPIE 5717, 134–141 (2005). https://doi.org/10.1117/12.601832
Article
Google Scholar
T. Sikanen, S. Tuomikoski, R.A. Ketola, R. Kostiainen, S. Franssila, T. Kotiaho, Characterization of SU-8 for electrokinetic microfluidic applications. Lab Chip 5(8), 888–896 (2005). https://doi.org/10.1039/b503016a
Article
Google Scholar
J.C. Doll, N. Harjee, N. Klejwa, R. Kwon, S.M. Coulthard, B. Petzold, M.B. Goodman, B.L. Pruitt, SU-8 force sensing pillar arrays for biological measurements. Lab Chip 9(10), 1449–1454 (2009). https://doi.org/10.1039/b818622g
Article
Google Scholar
A. Johansson, G. Blagoi, A. Boisen, Polymeric cantilever-based biosensors with integrated readout. Appl. Phys. Lett. 89, 173505 (2006). https://doi.org/10.1063/1.2364843
Article
Google Scholar
S.J. Patil, A. Adhikari, M.S. Baghini, V.R. Rao, An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform for humidity and soil moisture detection. Sens. Actuator B-Chem. 203, 165–173 (2014). https://doi.org/10.1016/j.snb.2014.06.110
Article
Google Scholar
L. Gammelgaard, P.A. Rasmussen, M. Calleja, P. Vettigen, A. Boisen, Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor. Appl. Phys. Lett. 88(11), 113508 (2006). https://doi.org/10.1063/1.2186396
Article
Google Scholar
A. Johansson, O. Hansen, J. Hales, A. Boisen, Temperature effects in Au piezoresistors integrated in SU-8 cantilever chips. J. Micromech. Microeng. 16(12), 2564–2569 (2006). https://doi.org/10.1088/0960-1317/16/12/007
Article
Google Scholar
N.S. Kale, S. Nag, R. Pinto, V. Ramgopal Rao, Fabrication and characterization of polymeric microcantilever with encapsulated hotwire CVD polysilicon piezoresistor. J. Microelectromech. Syst. 18(1), 79–87 (2009). https://doi.org/10.1109/JMEMS.2008.2008577
Article
Google Scholar
A. Shokuhfar, P. Heydari, M.R. Aliahmadi, M. Mohtashamifar, S. Ebrahimi-Nejad, M. Zahedinejad, Low-cost polymeric microcantilever sensor with titanium as piezoresistive material. Microelectron. Eng. 98, 338–342 (2012). https://doi.org/10.1016/j.mee.2012.07.067
Article
Google Scholar
C.V.B. Reddy, M.A. Khderbad, S. Gandhi, M. Kandpal, S. Patil et al., Piezoresistive SU-8 cantilever with Fe(III) porphyrin coating for CO sensing. IEEE Trans. Nanotechnol. 11(4), 701–706 (2012). https://doi.org/10.1109/TNANO.2012.2190619
Article
Google Scholar
S.J. Patil, N. Duragkar, V.R. Rao, An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection. Sens. Actuator B-Chem. 192, 444–451 (2014). https://doi.org/10.1016/j.snb.2013.10.111
Article
Google Scholar
M. Vinchurkar, A. Joshi, S. Pandey, V.R. Rao, Polymeric piezoresistive microcantilevers with reduced electrical variability. J. Microelectromech. Syst. 24(4), 1111–1116 (2015). https://doi.org/10.1109/JMEMS.2014.2384481
Article
Google Scholar
A. Adamia, F. Borghettia, N. Massaria, M. Decarlia, C. Collinia, D. Stoppaa, L. Lorenzellia, Design of a cantilever-based system for genomic applications. Procedia Eng. 25, 339–401 (2011). https://doi.org/10.1016/j.proeng.2011.12.099
Google Scholar
K. Rajanna, S. Mohan, Studies on meandering path thin-film strain gauge. Sens. Actuators 15(3), 297–303 (1988). https://doi.org/10.1016/0250-6874(88)87018-5
Article
Google Scholar
S. Sampath, K.V. Ramanaiah, Behaviour of Bi–Sb alloy thin films as strain gauges. Thin Solid Films 137(2), 199–205 (1986). https://doi.org/10.1016/0040-6090(86)90020-9
Article
Google Scholar
J. Gouault, M. Hubin, G. Richon, B. Eudeline, 3.2 The electromechanical behaviour of a full component (dielectric and Cu/Ni constantan alloy) for thin film strain gauge deposited upon steel-substrate. Vacuum 27(4), 362–365 (1977). https://doi.org/10.1016/0042-207X(77)90024-0
Article
Google Scholar
A.G. Alonso, J. Garcia, E. Castano, I. Obieta, F.J. Gracia, Strain sensitivity and temperature influence on sputtered thin films for piezoresistive sensors. Sens. Actuator A-Phys. 37–38, 784–789 (1993). https://doi.org/10.1016/0924-4247(93)80132-Z
Article
Google Scholar
P. Kayser, J.C. Godefroy, L. Leca, High-temperature thin-film strain gauges. Sens. Actuator A-Phys. 37–38, 328–332 (1993). https://doi.org/10.1016/0924-4247(93)80055-L
Article
Google Scholar
P. Schmid, C. Zarfl, G. Balogh, U. Schmid, Gauge factor of titanium/platinum thin films up to 350 & #xB0;C. Procedia Eng. 87, 172–175 (2014). https://doi.org/10.1016/j.proeng.2014.11.611
Article
Google Scholar
K. Rajanna, S. Mohan, Strain-sensitive property of vacuum evaporated manganese films. Thin Solid Films 172(1), 45–50 (1989). https://doi.org/10.1016/0040-6090(89)90116-8
Article
Google Scholar
H. Chiriac, M. Urse, F. Rusu, C. Hison, M. Neagu, Ni–Ag thin films as strain-sensitive materials for piezoresistive sensors. Sens. Actuator A-Phys. 76(1–3), 376–380 (1999). https://doi.org/10.1016/S0924-4247(99)00027-8
Article
Google Scholar
S.M. Mohanasundaram, R. Pratap, A. Ghosh, Tuning the sensitivity of a metal-based piezoresistive sensor using electromigration. J. Microelectromech. Syst. 21(6), 1276–1278 (2012). https://doi.org/10.1109/JMEMS.2012.2211579
Article
Google Scholar
J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra, Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuator A-Phys. 83(1), 47–53 (2000). https://doi.org/10.1016/S0924-4247(00)00299-5
Article
Google Scholar
N.S. Kale, R.G. Rao, Design and fabrication issues in affinity cantilevers for bioMEMS applications. J. Microelectromech. Syst. 15(6), 1789–1794 (2006). https://doi.org/10.1109/JMEMS.2006.886031
Article
Google Scholar
M. Bao, Analysis and Design Principles of MEMS Devices, 1st edn. (Elsevier, 2005). Chapter 6, p. 275
F.J. French, Polysilicon: a versatile material for microsystems. Sens. Actuator A-Phys. 99(1), 3–12 (2002). https://doi.org/10.1016/S0924-4247(01)00876-7
Article
Google Scholar
Y. Zhou, Z. Wang, Q. Zhang, W. Ruan, L. Liu, A front-side released single crystalline silicon piezoresistive microcantilever sensor. IEEE Sens. J. 9(3), 246–254 (2009). https://doi.org/10.1109/JSEN.2008.2012197
Article
Google Scholar
A. Katada, Y.F. Buys, Y. Tominaga, S. Asai, M. Sumita, Resistivity control in the semiconductive region for carbon-black-filled polymer composites. Colliod Polym. Sci. 283(4), 367–374 (2005). https://doi.org/10.1007/s00396-004-1149-5
Article
Google Scholar
S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, SU-8 silver photosensitive nanocomposite. Adv. Eng. Mater. 6(9), 719–724 (2004). https://doi.org/10.1002/adem.200400068
Article
Google Scholar
D.W. Marshall, Copper-based conductive polymers: a new concept in conductive resins. J. Adhes. 74(1–4), 301–315 (2000). https://doi.org/10.1080/00218460008034533
Article
Google Scholar
N. Zhang, J. Xie, M. Guers, V.K. Varadan, Chemical bonding multiwalled carbon nanotube to SU-8 via ultrasonic irradiation. Smart Mater. Struct. 12(2), 260–263 (2003). https://doi.org/10.1088/0964-1726/12/2/314
Article
Google Scholar
H.C. Chiamori, J.W. Brown, E.V. Adhiprakasha, E.T. Hantsoo, J.B. Straalsund, N.A. Melosh, B.L. Pruitt, Suspension of nanoparticles in SU-8: processing and characterization of nanocomposite polymers. Microelectron. J. 39(2), 228–236 (2008). https://doi.org/10.1016/j.mejo.2007.05.012
Article
Google Scholar
E.K. Sichel, J.I. Gittleman, P. Sheng, Electrical properties of carbon-polymer composites. J. Electron. Mater. 11(4), 699–747 (1982). https://doi.org/10.1007/BF02672392
Article
Google Scholar
K.H. Muller, J. Herrmann, B. Raguse, G. Baxter, T. Reda, Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules. Phys. Rev. B 66(7), 075417 (2002). https://doi.org/10.1103/PhysRevB.66.075417
Article
Google Scholar
D. Toker, D. Azulay, N. Shimoni, I. Balberg, O. Millo, Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 68(4), 041403 (2003). https://doi.org/10.1103/PhysRevB.68.041403
Article
Google Scholar
D. He, N.N. Ekere, Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D-Appl. Phys. 37(13), 1848–1852 (2004). https://doi.org/10.1088/0022-3727/37/13/019
Article
Google Scholar
I. Balberg, D. Azulay, D. Toker, O. Millo, Percolation and tunneling in composite materials. Int. J. Mod. Phys. B 18(15), 2091 (2004). https://doi.org/10.1142/S0217979204025336
MATH
Article
Google Scholar
J. Thaysen, Cantilever for Biochemical Sensing Integrated in a Microliquid Handling System (Ph. D. thesis, 2001). http://orbit.dtu.dk/files/4681389/Jacob_Thaysen.pdf
S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, A. Boisen, Processing of thin SU-8 films. J. Micromech. Microeng. 18(12), 125020 (2008). https://doi.org/10.1088/0960-1317/18/12/125020
Article
Google Scholar
T.A. Anhoj, A.M. Jorgensen, D.A. Zauner, J. Hubner, Effect of soft bake temperature on the polymerization of SU-8 photoresist. J. Micromech. Microeng. 16(9), 1819–1824 (2006). https://doi.org/10.1088/0960-1317/16/9/009
Article
Google Scholar
J. Zhang, K.L. Tan, G.D. Hong, L.J. Yang, H.Q. Gong, Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11(1), 20–26 (2001). https://doi.org/10.1088/0960-1317/11/1/304
Article
Google Scholar
J. Zhang, M.B. Chan-Park, S.R. Conner, Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip 4(6), 646–653 (2004). https://doi.org/10.1039/b403304c
Article
Google Scholar
M. Lillemose, M. Spieser, N.O. Christiansen, A. Christensen, A. Boisen, Intrinsically conductive polymer thin film piezoresistors. Microelectron. Eng. 85(5), 969–971 (2008). https://doi.org/10.1016/j.mee.2007.12.020
Article
Google Scholar
A.R. Sankar, S. Das, Experimental analysis of galvanic corrosion of a thin metal film in a multilayer stack for MEMS applications. Mater. Sci. Semicond. Process. 16(2), 449–453 (2013). https://doi.org/10.1016/j.mssp.2012.08.003
Article
Google Scholar
D. Haefliger, M. Nordstrom, P.A. Rasmussen, A. Boisen, Dry release of all-polymer structures. Microelectron. Eng. 78–79, 88–92 (2005). https://doi.org/10.1016/j.mee.2004.12.013
Article
Google Scholar
D. Haefliger, O. Hansen, A. Boisen, Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation. Adv. Mater. 18(2), 238–241 (2006). https://doi.org/10.1002/adma.200501687
Article
Google Scholar
R.E.I. Schropp, Frontiers in HWCVD. Thin Solid Film 517(12), 3415–3419 (2009). https://doi.org/10.1016/j.tsf.2009.01.038
Article
Google Scholar
K. Wouters, R. Puers, Diffusing and swelling in SU-8: insight in material properties and processing. J. Micromech. Microeng. 20(9), 095013 (2010). https://doi.org/10.1088/0960-1317/20/9/095013
Article
Google Scholar
C. Liu, Y. Liu, M. Sokuler, D. Fell, S. Keller, A. Boisen, H. Butt, G.K. Auernhammer, E. Bonaccurso, Diffusion of water into SU-8 microcantilevers. Phys. Chem. Chem. Phys. 12(35), 10577–10583 (2010). https://doi.org/10.1039/c002478c
Article
Google Scholar
M. Tenje, S. Keller, S. Dohn, Z.J. Davis, A. Boisen, Drift study of SU8 cantilevers in liquid and gaseous environments. Ultramicroscopy 110(6), 596–598 (2010). https://doi.org/10.1016/j.ultramic.2010.02.017
Article
Google Scholar
S. Schmid, S. Kuhne, C. Hierold, Influence of air humidity on polymeric microresonators. J. Micromech. Microeng. 19(6), 065018 (2009). https://doi.org/10.1088/0960-1317/19/6/065018
Article
Google Scholar
C. Martin, A. Llobera, G. Villanueva, A. Voigt, G. Gruetzner, J. Brugger, F. Perez-Murano, Stress and aging minimization in photoplastic AFM probes. Microelectron. Eng. 86(4), 1226–1229 (2009). https://doi.org/10.1016/j.mee.2008.12.033
Article
Google Scholar