Skip to main content
Log in

Resistivity control in the semiconductive region for carbon-black-filled polymer composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

It is known that the electrical volume resistivity of insulating polymers filled with conductive fillers, such as metal particles and/or carbon black (CB) particles, suddenly decreases at a certain content of the filler. Therefore, it is very difficult to control the resistivity in the semiconductive region for the CB-filled composites. We examined two effects to control the electrical volume resistivity in the semiconductive region for CB-filled polymer composites. One is the effect of fluorination of the CB surface on the percolation behavior using surface-fluorinated CB particles as a filler. The other is the effect of copolymerization of polyethylene (PE) with a vinyl acetate (VA) functional group on the percolation behavior using poly(ethylene-co-VA) (EVA) as a matrix. By immersion heat measurements, it was found that the London dispersive component turned out to be the predominant factor of the surface energy of fluorinated CBs. The London dispersive component of the surface energy significantly decreased, while the polar component slightly increased on increasing the fluorine content. The resistivity of fluorinated a CB-filled low-density PE composite showed that the percolation threshold increased, and the transition from the insulating state to the conductive state became sluggish, on increasing the fluorine content. In the case of using EVA as a matrix, on the other hand, the percolation curve was moderated with the increase in the VA content. Therefore, copolymerization of PE with VA is also suitable for the design of a semiconductive polymer composite as well as for fluorination of the CB surface. The total surface area per unit mass of dispersed CB particles in the EVA matrix estimated from small-angle X-ray scattering decreased with increasing CB content. Further, the decrease in the surface area is moderated with an increase in VA content. It was found that the difference in the percolation curve is due to the difference in the dispersive state of CB particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a,b
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buche FJ (1972) Appl Phys 43:4837

    Article  Google Scholar 

  2. Buche FJ (1973) Appl Phys 44:532

    Article  Google Scholar 

  3. Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) J Mater Sci 17:1610

    CAS  Google Scholar 

  4. Sumita M, Asai S, Miyadera N, Jojima E, Miyasaka K (1986) Colloid Polym Sci 264:212

    CAS  Google Scholar 

  5. Wessling B (1988) Synth Met 27:A83

    Article  CAS  Google Scholar 

  6. Lux F (1993) J Mater Sci 28:285

    CAS  Google Scholar 

  7. Ando N, Takeuchi M (1998) Thin Solid Films 334:182

    CAS  Google Scholar 

  8. Wu G, Zhang C, Miura T, Asai S, Sumita M (2000) J Appl Polym Sci 80:1063

    Article  Google Scholar 

  9. Katada A, Akiyama K, Isogai T, Tominaga Y, Asai S, Sumita M (2003) Mater Sci Technol 40:35

    Google Scholar 

  10. Katada A, Konishi Y, Isogai T, Tominaga Y, Asai S, Sumita M (2003) J Appl Polym Sci 89:1151

    Article  CAS  Google Scholar 

  11. Katada A, Isogai T, Sumita M (2003) J Soc Rubber Ind 76: 375

    CAS  Google Scholar 

  12. Rodrigues J, Hamed GR (1996) Rubber Chem Technol 69:286

    Google Scholar 

  13. Katada A, Shimura S, Tominaga Y, Asai S, Sumita M (2004) J Appl Polym Sci 91:2928

    Article  CAS  Google Scholar 

  14. Isogai T, Maruyama S, Yamana M, Kubo M (1994) In: Annual 21st meetings of the Carbon Society. Abstract 278

  15. Isogai T, Yamaguchi F, Kubo M (1998) Fluorine in coatings III papers. The Paints Research Association 27

  16. Shout TR, Moffatt D, Huebner W. (1991) J Mater Sci 26:145

    Google Scholar 

  17. Xiao Y, Wu G, Ma D (1998) J Appl Polym Sci 67:131

    Article  Google Scholar 

  18. Zhang JF, Zheng Q, Yang YQ, Yi XS (2002) J Appl Polym Sci 83:3112

    Article  CAS  Google Scholar 

  19. Park SJ, Kim HC, Kim HY (2002) J Colloid Interface Sci 255:145

    Article  CAS  PubMed  Google Scholar 

  20. Brown DS, Warner FP, Wetton RE (1972) Polymer 13:575

    Article  CAS  Google Scholar 

  21. Young RJ, Al-khudhairy DH, Thomas AG (1986) J Mater Sci 21:1211

    CAS  Google Scholar 

  22. Deslandes Y, Whitemore MK, Bluhm TL, Hokansson A (1988) J Dispersion Sci Technol 9:235

    CAS  Google Scholar 

  23. Zhang C, Yi XS, Asai S, Sumita M (1999) Compos Interfaces 6:28

    Google Scholar 

  24. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    CAS  Google Scholar 

  25. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  26. Schonhorn H (1966) Nature 210:896

    CAS  Google Scholar 

  27. Kraus G. (1955) J Phys Chem 59:343

    CAS  Google Scholar 

  28. Tsutsumi K, Abe K (1989) Colloid Interface Sci 267:637

    CAS  Google Scholar 

  29. Gonzalez-Martin ML, Junczuk B, Labajos-Broncano L, Bruque JM (1997) Langmuir 13:5991

    Article  CAS  Google Scholar 

  30. London F (1937) Trans Faraday Soc 33:8

    Article  CAS  Google Scholar 

  31. Fox HW, Zisman WA (1950) J Colloid Sci 5:514

    CAS  Google Scholar 

  32. Sichel EK (ed) (1982) Carbon black polymer composites. Dekker, New York

  33. Ezquerra TA, Kulescza M, Balta Calleja FJ (1991) Synth Met 41:915

    Article  CAS  Google Scholar 

  34. Porod VG (1951) Kolloid Z 124:83

    CAS  Google Scholar 

  35. Porod VG (1952) Kolloid Z 125:51

    CAS  Google Scholar 

  36. Debye P, Anderson HR, Brumberger H (1957) J Appl Phys 28:679

    CAS  Google Scholar 

  37. Dawkins JV (ed) (1978) Developments in polymer characterization-1. Applied Science, London

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Sumita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katada, A., Buys, Y.F., Tominaga, Y. et al. Resistivity control in the semiconductive region for carbon-black-filled polymer composites. Colloid Polym Sci 283, 367–374 (2005). https://doi.org/10.1007/s00396-004-1149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1149-5

Keywords

Navigation