Skip to main content
Log in

Numerical Investigation of Natural Convection in a Partially Heated Square Cavity and at Different Inclinations Filled by (Water-Al2O3) Nanofluid, Using the Thermal Lattice Boltzmann Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study presents a numerical analysis of the enhancement in heat transfer through natural convection within a square enclosure filled with nanofluid at various inclinations. In order to achieve this objective, two-dimensional simulations were conducted using a customized code based on the thermal lattice Boltzmann method and a double distribution function approach with two different lattice configurations, namely D2Q9 for the dynamic field and D2Q5 for the thermal field. The comparison of the numerical results obtained in the validation work for the differentially heated square cavity problem for both pure fluid and nanofluid demonstrated a favourable agreement with the findings reported in literature. An investigation was carried out to analyse the flow and heat transfer characteristics by varying the Grashof number in the range of 103 ≤ Gr ≤ 105, the nanoparticle concentration in the range of 0% ≤ ϕ ≤ 3%, and the heater length and inclination angle in the ranges of 0.2 ≤ l/H ≤ 0.8 and 0˚ ≤ γ ≤ 60˚ respectively. The results indicated that the Nusselt number increases as the control parameters are increased, except for the inclination angle. The highest enhancements in heat transfer were observed at angles γ = 45˚ and γ = 30˚ for Gr = 103 and Gr > 103 respectively. A correlation for the Nusselt number was established specifically for the case of γ = 0˚, which could be of significant value in the field of thermal management for applications utilizing this particular configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

cp:

Specific heat (J/kg.°K)

\({{\varvec{e}}}_{{\varvec{i}}}\) :

Microscopic speed

\({\text{F}}\) :

Buoyancy force

f:

Distribution function for fluid

g:

Distribution function for temperature

\({\text{g}}\) :

: Acceleration due to gravity

Gr:

Grashof number

H:

Height of cavity (m)

k:

Thermal conductivity, (W/m°K)

l:

Dimensional length of heater (m)

L:

Dimensionless length of heater (l/H)

Nu:

Average Nusselt number

P:

Pressure (Pa)

Pr:

Prandtl number

T:

Temperature (°K)

t:

Time (s)

u, v:

Dimensional x and y components of velocity (m/s)

U, V:

Dimensionless x and y components of velocity

x, y:

Cartesian coordinates (m)

X, Y:

Dimensionless coordinates

\({\text{x}}\) :

Position vector

w:

Weight factor

α:

Thermal diffusivity (m2/s)

β:

Thermal expansion coefficient, (1/°K)

γ:

Inclination angle (°)

Δt:

Time step

θ:

Dimensionless temperature

μ:

Dynamic viscosity (W/m°K)

ν:

Kinematic viscosity (m2/s)

ρ:

Density (kg/m3)

τ:

Relaxation time

ϕ:

Nanoparticle concentration (%)

\(\Omega \) :

Collision operator

\(\Psi \) :

Dimensionless Stream function

eq:

Equilibrium

T:

Temperature

C:

Cold

f:

Base fluid

H:

Hot

i:

Streaming direction of particles

m:

Maximal value

nf:

Nanofluid

np:

Nanoparticle

x:

Horizontal component

α:

Correspondant to temperature

ν:

Correspondant to fluid

References

  1. Hussien, A.A., Al-Kouz, W., El Hassan, M., Janvekar, A.A., Chamkha, A.J.: A review of flow and heat transfer in cavities and their applications. Eur. Phys. J. Plus 136, 353 (2021). https://doi.org/10.1140/epjp/s13360-021-01320-3

    Article  Google Scholar 

  2. Senthil, N.V., P. M., Saravanan S., Niu X. D., Kandaswamy P.: Natural convection cooling of an array of flush mounted discrete heaters inside a 3D cavity. Adv. Appl. Math. Mech. 9, 771–782 (2017). https://doi.org/10.4208/AAMM.2015.M1245

    Article  MathSciNet  Google Scholar 

  3. Baϊri, A.: Nusselt-Rayleigh correlations for design of industrial elements: experimental and numerical investigation of natural convection in titled square cavity filled air enclosures. Energ. Convers. Manag. 49, 771–782 (2008). https://doi.org/10.1016/j.enconman.2007.07.030

    Article  Google Scholar 

  4. Ren, X.H., Liu, R.Z., Wang, Y.H., Wang, L., Zhao, F.Y.: Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: reversal and cooperative flow dynamics. Renewable Energy 138, 354–367 (2019). https://doi.org/10.1016/j.renene.2019.01.090

    Article  Google Scholar 

  5. Hanafizadeh, P., Ashjaee, M., Goharkhah, M., Montazeri, K., Akram, M.: The comparative study of single and two-phase models for magnetite nanofluid forced convection in a tube. Int. Commun. Heat Mass Transfer 65, 58–70 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.04.01

    Article  Google Scholar 

  6. Saghir, M.Z., Ahadi, A., Yousefi, T., Farahbakhsh, B.: Two-phase and single-phase models of flow of nanofluid in a square cavity: Comparison with experimental results. Int. J. Therm. Sci. 100, 372–380 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.10.005

    Article  Google Scholar 

  7. Khanafer, K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat and Mass Transf. 54, 4410–4428 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048

    Article  Google Scholar 

  8. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Ener. Conv. And Manag. 52, 789–793 (2011). https://doi.org/10.1016/j.enconman.2010.06.072

    Article  Google Scholar 

  9. Dubyk, K., Isaiev, M., Alekseev, S., Burbelo, R., Lysenko, V.: Thermal conductivity of nanofluids formed by carbon flurooxide mesoparticles. SN Appl. Sci. 1, 1440 (2019). https://doi.org/10.1007/s24452-019-1498-9

    Article  Google Scholar 

  10. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. I. J. Heat Mass Trans. 46, 3639–3653 (2003). https://doi.org/10.1016/S0017-9310(03)00156-X

    Article  Google Scholar 

  11. Jahanshahi, M., Hosseinizadeh, S.F., Alipanah, M., Dehghani, A., Vakilinejad, G.R.: Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid. I. Comm. Heat Mass Trans. 37, 687–694 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.03.010

    Article  Google Scholar 

  12. Öğüt, E.B.: Natural convection of water-based nanofluids in an inclined enclosure with a heat source. I. J. Therm. Sci. 48, 2063–2073 (2009). https://doi.org/10.1016/j.ijthermalsci.2009.03.014

    Article  Google Scholar 

  13. Gümgüm S., Tezer-Sezgin M.) DRBEM solution of natural convection flow of nanofluids with a heat source, Eng. Analys. with Boundary Elements. 34, 727–737 (2010). https://doi.org/10.1016/j.enganabound.2010.03.006

  14. Hosseini, M., Mustafa, M.T., Jafaryar, M., Mohammadian, E.: Nanofluid in tilted cavity with partially heated walls. J. Mol. liquids. 199, 545–551 (2014). https://doi.org/10.1016/j.molliq.2014.09.051

    Article  Google Scholar 

  15. Mansour, M.A., Mohamed, R.A., Ahmed, S.E.: Natural convection cooling of a heat source embedded on the bottom of an enclosure filled with Cu-water nanofluid: effects of various thermal boundary conditions. Heat Mass Trans. 47, 1479–1490 (2011). https://doi.org/10.1007/s00231-011-0811-y

    Article  Google Scholar 

  16. Abu-Nada, E., Oztop, H.F., Pop, I.: Effects of surface waviness on heat and fluid flow in a nanofluid filled closed space with partial heating. Heat Mass Trans. 52, 1909–1921 (2016). https://doi.org/10.1007/s00231-015-1714-0

    Article  Google Scholar 

  17. Akhter S., Mokaddes Ali M., Abdul Alim Md. Hydromagnetic natural convection heat transfer in a partially heated enclosure filled porous medium saturated by nanofluid. I.J. Appl. Comput. Math. 5, 52,1–27 (2019). https://doi.org/10.1007/s40819-019-0638-7

  18. Salari, M., Malekshah, E.H., Malekshah, M.H.: Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al2O3-water nanofluid heated partially from side walls. Alex. Eng. J. 57, 1401–1412 (2018). https://doi.org/10.1016/j.aej.2017.07.004

    Article  Google Scholar 

  19. Sobhani, M., Ajam, H.: Taguchi optimization for natural convection heat transfer of Al2O3 nanofluid in a partially heated cavity using LBM. J. Therm. Analys. Calorimetry. 138, 889–904 (2019). https://doi.org/10.1007/s10973-019-08170-3

    Article  Google Scholar 

  20. Kherroubi, S., Benkahla, Y.K., Labsi, N., Ragui, K., Bensaci, A., Boutra, A., Ouyahia, S.E., Benzema, M.: Two- and three- dimensional comparative study of heat transfer and pressure drop characteristics of nanofluids flow through a ventilated cubic cavity (Part I: Newtonian nanofluids). J. Therm. Analys. And Calorim. 144, 623–646 (2021). https://doi.org/10.1007/s10973-020-09588-w

    Article  Google Scholar 

  21. Li, M., Zheng, C., Feng, F., Chen, X., Wu, W.T.: Natural convection and anisotropic heat transfer of shear-thinning in a ferro-nanofluid in partially heated rectangular enclosures under magnetic field. Therm. Sci. Eng. Progress. 25, 100992 (2021). https://doi.org/10.1016/j.tsep.2021.100992

    Article  Google Scholar 

  22. Gangawane, K.M.: MHD free convection in a partially heated open-ended square cavity: effect of angle of magnetic field and heater location. I. J. Appl. Comput. Math. 5(63), 1–19 (2019). https://doi.org/10.1007/s40819-019-0652-9

    Article  MathSciNet  Google Scholar 

  23. Nee, A.: Hybrid lattice Boltzmann-Finite difference formulation for combined heat transfer problems by 3D natural convection and surface thermal radiation. I. J. Mech. Sci. 173, 105447 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105447

    Article  Google Scholar 

  24. Aliu, O., Sakidin, H., Faroozesh, J., Yahya, N.: Lattice Boltzmann application to nanofluids dynamics—a review. J. Molecular Liquids 300, 112284 (2020). https://doi.org/10.1016/j.molliq.2019.112284

    Article  Google Scholar 

  25. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. lett. 61, 2332 (1988). https://doi.org/10.1103/PhysRevLett.61.2332

    Article  Google Scholar 

  26. Wolfram, S.: Cellular automaton fluids 1: Basic theory. J. Stat. Phys. 45, 471–526 (1986). https://doi.org/10.1007/BF01021083

    Article  MathSciNet  Google Scholar 

  27. Succi, S.: The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  28. Osaki, S., Hayashi, K., Kohmura, E., Tomiyama, A.: Numerical simulations of flows in cerebral aneurysms using the lattice Boltzmann method with single-and multiple-relaxation time collision models. Comput. Math. Appl. 78, 2746–2760 (2019). https://doi.org/10.1016/j.camwa.2019.04.021

    Article  MathSciNet  Google Scholar 

  29. Ezzatneshan, E.: Comparative study of the lattice Boltzmann collision models for simulation of incompressible fluid flows. Math. Comput. Simul 456, 158–177 (2019). https://doi.org/10.1016/j.matcom.2018.07.013

    Article  MathSciNet  Google Scholar 

  30. Liu, C.H., Lin, K.H., Mai, H.C., Lin, C.A.: Thermal boundary conditions for thermal lattice Boltzmann simulations. Comput. Math. Appl. 59, 2178–2193 (2010). https://doi.org/10.1016/j.camwa.2009.08.043

    Article  MathSciNet  Google Scholar 

  31. Mohamad, A.A., Kuzmin, A.: A critical evaluation of the force term in lattice Boltzmann method, natural convection problem. I. J. Heat Mass Trans. 53, 990–996 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014

    Article  Google Scholar 

  32. Peng, Y., Shu, C., Chew, Y.T.: Simplified thermal lattice model for incompressible thermal flow. Phys. Rev. E 46, 020671 (2003). https://doi.org/10.1103/PhysRevE.68.026701

    Article  Google Scholar 

  33. Mapelli, V.P., Czelusniak, L.E., Guzella, M.D.S., Gómez, L.C.: Total energy thermal lattice Boltzmann simulation of mixed convection in a square cavity, Int. J. Comput. Math. 7, 209, 1–18 (2021). https://doi.org/10.1007/s40819-021-01147-7,

  34. Bouamoud, B., Houat, S.: Mesoscopic study of natural convection in a square cavity filled with alumina-based nanofluid. Energy Procedia. 139, 758–765 (2017). https://doi.org/10.1016/j.egypro.2017.11.283

    Article  Google Scholar 

  35. Li L., Mei R., Klausner J.F.: Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs D2Q9. I. J. Heat Mass Trans. 108, 41–62 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092

  36. Du, R., Liu, Z.: A lattice Boltzmann model for the fractional advection-diffusion equation coupled with incompressible Navier-Stokes equation. Appl. Math. Letters. 101, 106074 (2020). https://doi.org/10.1016/j.aml.2019.106074

    Article  MathSciNet  Google Scholar 

  37. Krane, R.J., Jessee, J.: Some detailed field measurements for a natural convection flow in a vertical square enclosure. Proc First ASME JSME Thermal Eng Joint Conf 1, 323–329 (1983)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to this article, participated in drafting, preparing the figures, and checking the manuscript. They also read and approved the final manuscript.

Corresponding author

Correspondence to Samir Houat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouamoud, B., Houat, S. Numerical Investigation of Natural Convection in a Partially Heated Square Cavity and at Different Inclinations Filled by (Water-Al2O3) Nanofluid, Using the Thermal Lattice Boltzmann Method. Int. J. Appl. Comput. Math 10, 97 (2024). https://doi.org/10.1007/s40819-024-01731-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01731-7

Keywords

Navigation