Skip to main content
Log in

Computational Analysis of Three-Dimensional Unsteady Natural Convection and Entropy Generation in a Cubical Enclosure Filled with Water-Al2O3 Nanofluid

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Effects of Rayleigh number, solid volume fraction and entropy generation on the natural convection heat transfer and fluid flow inside a three-dimensional cubical enclosure filled with water-Al2O3 nanofluid have been investigated numerically using the control volume finite difference method. The enclosure left sidewall is maintained at isothermal hot temperature, while the right one is maintained at isothermal cold temperature. The other enclosure walls are considered adiabatic. The second law of thermodynamics is applied to predict the nature of irreversibility in terms of entropy generation rate. Numerical computations are carried out for Rayleigh numbers from \({(10^{3} \leq {\rm Ra} \leq 10^{6})}\) , solid volume fraction from \({(0\% \leq \varphi\, \leq 20\%)}\) , while the Prandtl number of water is considered constant as (Pr = 6.2). Streamlines, isothermal lines, counters of local and total entropy generation and the variation of Bejan number, local and average Nusselt numbers are presented and discussed in detail. The results explain that the average Nusselt number increases when the solid volume fraction of nanoparticles and the Rayleigh number increase. Also, the Bejan and average Nusselt numbers have a reverse behavior to each other for the same range of Rayleigh number and solid volume fraction. In addition, the results show that the entropy generation rate due to heat transfer, friction and the total entropy generation increase as the solid volume fraction increases, while it increases highly when the Rayleigh number increases especially near the hot left sidewall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Be:

Bejan number

C p :

Specific heat at constant pressure (J/kg K)

g :

Gravitational acceleration (m/s2)

k :

Thermal conductivity (W/m K)

l :

Enclosure width and height (m)

n :

Unit vector normal to the wall

N s :

Dimensionless local generated entropy

Nu:

Local Nusselt number

Pr:

Prandtl number

Ra:

Rayleigh number

\({S'_{{\rm gen}}}\) :

Generated entropy (kJ/kg K)

t :

Dimensionless time (t′·α/l 2)

T :

Dimensionless temperature \({[(T'-T'_{c})/(T'_{h}\,-\,T'_{c})]}\)

T c :

Cold temperature (K)

T h :

Hot temperature (K)

T o :

Bulk temperature \({[T_{o} = (T'_{c}+T'_{h}) / 2]}\) (K)

\({\vec {V}}\) :

Dimensionless velocity vector (\({\vec{{V}^{\prime}}\cdot l/\alpha )}\)

x, y, z :

Dimensionless Cartesian coordinates (x′/ly′/lz′/l)

α :

Thermal diffusivity (m2 /s)

β :

Thermal expansion coefficient (1 / K)

ρ :

Density (kg/m3)

μ :

Dynamic viscosity (kg/m s)

ν :

Kinematic viscosity (m2/s)

φ :

Nanoparticle or solid volume fraction

φ S :

Irreversibility coefficient

\({\vec{\psi}}\) :

Dimensionless vector potential (\({\vec{{\psi }^{\prime}}/\alpha )}\)

\({\vec {\omega }}\) :

Dimensionless vorticity (\({\vec{{\omega }^{\prime}}\,\alpha /l^{2})}\)

ΔT :

Dimensionless temperature difference

av:

Average

x, y, z :

Cartesian coordinates

fr:

Friction

f :

Fluid

m :

Mean or average

nf:

Nanofluid

s :

Solid

th:

Thermal

tot:

Total

\({^{{\prime}}}\) :

Dimensional variable

References

  1. Murshed S., Leong K., Yang C.: Thermophysical and electro-kinetic properties of nanofluids—a critical review. Appl. Therm. Eng. 28, 2109–2125 (2008)

    Article  Google Scholar 

  2. Rashmi W., Ismail A.F., Khalid M., Faridah Y.: CFD studies on natural convection heat transfer of Al2O3-water nanofluids. Heat Mass Transf. 47, 1301–1310 (2011)

    Article  Google Scholar 

  3. Ho C., Chen M., Li Z.: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 51, 506–4516 (2008)

    Article  Google Scholar 

  4. Ghasemi B., Aminossadati S.: Natural convection heat transfer in an inclined enclosure filled with a water-Cuo nanofluid. Numer. Heat Transf. Part A 55(8), 807–823 (2009)

    Article  Google Scholar 

  5. Ogut E.: Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int. J. Therm. Sci. 48, 063–2073 (2009)

    Google Scholar 

  6. Abu-Nada E., Chamkha A.: Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid. Int. J. Therm. Sci. 49, 339–2352 (2010)

    Google Scholar 

  7. Kahveci K.: Buoyancy driven heat transfer of nanofluids in a tilted enclosure. ASME J. Heat Transf. 132, 29–541 (2010)

    Article  Google Scholar 

  8. Abu-Nada E., Oztop H., Pop I.: Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection. Superlattices Microstruct. 51, 381–395 (2012)

    Article  Google Scholar 

  9. Abu-Nada E., Masoud Z., Oztop H., Campo A.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49, 479–491 (2010)

    Article  Google Scholar 

  10. Alloui Z., Vasseur P., Reggio M.: Analytical and numerical study of buoyancy-driven convection in a vertical enclosure filled with nanofluids. Int. Heat Mass Transf. 48, 627–639 (2012)

    Article  Google Scholar 

  11. Hojjat M., Etemad S.Gh., Bagheri R., Thibault J.: Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature. Heat Mass Transf. 47, 203–209 (2011)

    Article  Google Scholar 

  12. Khaled Khodary E.: Numerical feasibility study of utilizing nanofluids in laminar natural convection inside enclosures. Heat Mass Transf. 49, 41–54 (2013)

    Google Scholar 

  13. Fusegi T., Hyun J., Kuwahara K.: A numerical study of 3D natural convection in a cube: effects of the horizontal thermal boundary conditions. Fluid Dyn. Res. 8, 221–230 (1991)

    Article  Google Scholar 

  14. Fusegi T., Hyun M., Kuwahara K., Farouk B.: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 34(6), 1543–1557 (1991)

    Article  Google Scholar 

  15. Sezai I., Mohamad A.: Three-dimensional simulation of natural convection in cavities with side opening. Int. J. Numer. Methods Heat Fluid Flow 8(7), 800–813 (1998)

    Article  MATH  Google Scholar 

  16. Frederick R., Berbakow O.: Natural convection in cubical enclosures with thermal sources on adjacent vertical walls. Numer. Heat Transf. Part A 41(3), 331–340 (2002)

    Article  Google Scholar 

  17. Lo D., Leu S.: DQ analysis of 3D natural convection in an inclined cavity using an velocity–vorticity formulation. Proc. World Acad. Sci. Eng. Technol. 36, 370–375 (2008)

    Google Scholar 

  18. Webb B., Bergman T.: Three-dimensional natural convection from vertical heated plates with adjoining cool surfaces. J. Heat Transf. 114, 115–120 (1992)

    Article  Google Scholar 

  19. Hiller W., Koch S., Kowalewski T.: Onset of natural convection in a cube. Int. J. Heat Mass Transf. 13, 3251–3263 (1993)

    Article  Google Scholar 

  20. Tou S., Tso C., Zhang. X: 3-D numerical analysis of natural convective liquid cooling of a 3\({\times}\) 3 heater array in rectangular enclosures. Int. J. Heat Mass Transf. 42, 3231–3244 (1999)

    Article  MATH  Google Scholar 

  21. Tric E., Labrosse G., Betrouni M.: A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, from accurate numerical solutions. Int. J. Heat Mass Transf. 43, 4043–4056 (2000)

    Article  MATH  Google Scholar 

  22. Dias T., Milanez L.: Natural convection in high aspect ratio three-dimensional enclosures with uniform heat flux on the heated wall. Therm. Eng. 3(2), 96–99 (2004)

    Google Scholar 

  23. Kaluri R., Basak T.: Entropy generation minimization versus thermal mixing due to natural convection in differentially and discretely heated square cavities. Numer. Heat Transf. Part A 58(6), 475–504 (2010)

    Article  Google Scholar 

  24. Famouri M., Hooman K.: Entropy generation for natural convection by heated partitions in a cavity. Int. Commun. Heat Mass Transf. 35, 492–502 (2008)

    Article  Google Scholar 

  25. Ilis G., Mobedi M., Sunden B.: Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transf. 35, 696–703 (2008)

    Article  Google Scholar 

  26. Bouabid M., Magherbi M., Hidouri N., Ben Brahim A.: Entropy generation at natural convection in an inclined rectangular cavity. Entropy 13, 1020–1033 (2011)

    Article  MATH  Google Scholar 

  27. Basak T., Kaluri R., Balakrishnan A.: Effects of thermal boundary conditions on entropy generation during natural convection. Numer. Heat Transf. Part A 59, 372–402 (2011)

    Article  Google Scholar 

  28. Shahi M., Mahmoudi A., Raouf A.: Entropy generation due to natural convection cooling of a nanofluid. Int. Commun. Heat Mass Transf. 38, 972–983 (2011)

    Article  Google Scholar 

  29. Esmaeilpour M., Abdollahzadeh M.: Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int. J. Therm. Sci. 52, 127–136 (2012)

    Article  Google Scholar 

  30. Brinkman H.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  31. Kolsi L., Oztop H., Borjini M., Al-Salem K.: Second law analysis in a three-dimensional lid-driven cavity. Int. Commun. Heat Mass Transf. 38, 1376–1383 (2011)

    Article  Google Scholar 

  32. Alizadeh M.R., Dehghan A.A.: Conjugate natural convection of nanofluids in an enclosure with a volumetric heat source. Arab. J. Sci. Eng. 39(2), 1195–1207 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioua Kolsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolsi, L., Hussein, A.K., Borjini, M.N. et al. Computational Analysis of Three-Dimensional Unsteady Natural Convection and Entropy Generation in a Cubical Enclosure Filled with Water-Al2O3 Nanofluid. Arab J Sci Eng 39, 7483–7493 (2014). https://doi.org/10.1007/s13369-014-1341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1341-y

Keywords

Navigation