Skip to main content
Log in

Heatline and Massline Analysis Due to Magnetohydrodynamic Double Diffusive Natural Convection in a Trapezoidal Enclosure with Various Aspect Ratios

  • Original paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

As streamlines are the utmost visualization tools of fluid flow and not the isobars, heatlines and masslines are the sufficient visualization tools of heat and mass transfers and not the isotherms and isoconcentrations respectively. Motivated by various applications of conjugate heat and mass transfer in drying, cooling, sterilization process etc., the present work aims to find out the detailed analysis of conjugate heat and mass transfer using heatlines and masslines in a trapezoidal enclosure with different heating and various massive walls in the presence of magnetic field. The main impact of the paper is the analysis of heatlines and masslines with different aspect ratios of the cavity, which has not been considered by any earlier researcher. The second order accurate finite difference approximation streamfunction—velocity formulation of full Navier Stokes equations has been used to find out the numerical solutions. The discretised non-homogeneous system of linear equations are solved by Biconjugate Gradient Stabilized method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Aspect ratio

B :

Magnetic induction (\(\mathrm{Tesla} = \mathrm{N}/\mathrm{Am}^{2}\))

C :

Concentration

D :

Mass diffusivity

g :

Acceleration due to gravity, (ms\(^{-2}\))

Ha :

Hartmann number

h :

Step length in both \(\xi \) and \(\eta \) coordinates

L :

Length of the bottom wall of the enclosure, m

Le :

Lewis number, \(Le = \alpha /D\)

N :

Buoyancy ratio

Nu :

Nusselt number

P :

Dimensional pressure (Pa)

p :

Dimensionless pressure

Pr :

Prandtl number

Ra :

Rayleigh number

S :

Dimensionless concentration

Sh :

Sherwood number

T :

Temperature (K)

U :

x component of velocity, (ms\(^{-1}\))

u :

Dimensionless x component of velocity

V :

y component of velocity, (ms\(^{-1}\))

v :

Dimensionless y component of velocity

X :

Distance along x axis (m)

x :

Dimensionless distance along x axis

Y :

Distance along y axis (m)

y :

Dimensionless distance along y axis

\(C_{c}\) :

Low concentration at the wall of the cavity

\(C_{h}\) :

High concentration at the wall of the cavity

\(S_{1}\) :

Length of left wall (m)

\(S_{2}\) :

Length of right wall (m)

\(T_{h}\) :

Temperature of hot wall (K)

\(T_{c}\) :

Temperature of cold wall (K)

\({\overline{Nu}}\) :

Average Nusselt number

\({\overline{Sh}}\) :

Average Sherwood number

\(\alpha \) :

Thermal diffusivity (m\(^{2}\hbox {s}^{-1}\))

\(\xi \) :

Horizontal coordinate in a unit square

\(\eta \) :

Vertical coordinate in a unit square

\(\nu \) :

Kinematic viscosity (\(\hbox {m}^{2}\hbox {s}^{-1}\))

\(\psi _{ij}\) :

\(\psi (\xi +ih, \eta +jh)\)

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density, (kg \(\hbox {m}^{-3}\))

\(\phi \) :

Angle of inclination

\(\psi \) :

Streamfunction

\(\tau \) :

Massfunction

\(\pi \) :

Heatfunction

\(\omega \) :

Vorticityfunction

\(\beta _{T}\) :

Coefficient of thermal expansion

\(\beta _{S}\) :

Coefficient of solutal expansion

b :

Bottom wall

l :

Left wall

r :

Right wall

t :

Top wall

max :

Maximum

\(\xi \) :

Partial derivative w.r.t. \(\xi \)

\(\eta \) :

Partial derivative w.r.t. \(\eta \)

References

  1. White, F.M.: Viscous Fluid Flow, 2nd edn, p. 62. McGraw-Hill, New York (1977)

    Google Scholar 

  2. Eckert Jr., E.R.G., Drake, R.M.: Analysis of Heat and Mass Transfer (Chap. 1). McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  3. Swenson, D., Hardeman, B.: The effects of thermal deformation on flow in a jointed geothermal reservoir. Int. J. Rock Mech. Min. Sci. 34, e1-308–e19-308 (1997)

    Google Scholar 

  4. O’Mahoney, D., Browne, D.J.: Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process. Exp. Therm. Fluid Sci. 22, 111–122 (2000)

    Article  Google Scholar 

  5. Joudi, K.A., Hussein, I.A., Farhan, A.A.: Computational model for a prism shaped storage solar collector with a right triangular cross-section. Energy Convers. Manag. 45, 391–409 (2004)

    Article  Google Scholar 

  6. Akterian, S.G., Fikiin, K.A.: Numerical simulation of unsteady heat conduction in arbitrary shaped canned foods during sterilization processes. J. Food Eng. 21, 343–354 (1994)

    Article  Google Scholar 

  7. Park, R.J., Kim, S.B., Kim, H.D., Choi, S.M.: Natural convection heat transfer with crust formation in the molten metal pool. Nucl. Technol. 127, 66–80 (1999)

    Article  Google Scholar 

  8. Mishra, B., Olson, D.L.: Molten salt applications in materials processing. J. Phys. Chem. Solids 66, 396–401 (2005)

    Article  Google Scholar 

  9. Roy, S., Basak, T.: Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s). Int. J. Eng. Sci. 43, 668–680 (2005)

    Article  Google Scholar 

  10. Lee, K., Tsai, H., Yan, W.: Mixed convection heat and mass transfer in vertical rectangular ducts. Int. J. Heat Mass Transf. 40(7), 1621–1631 (1997)

    Article  Google Scholar 

  11. Alimi, S.E., Orfi, J., Nasrallah, S.B.: Buoyancy effects on mixed convection heat and mass transfer in a duct with sudden expansions. J. Heat Mass Transf. 41(6), 559–567 (2005)

    Article  Google Scholar 

  12. Teamah, M.A., Khairat Dawood, M.M., El-Maghlany, W.M.: Double diffusive natural convection in a square cavity with segmental heat sources. Eur. J. Sci. Res. 54(2), 287–301 (2011)

    Google Scholar 

  13. Wee, H.K., Keey, R.B., Cunningham, M.J.: Heat and moisture transfer by natural convection in a rectangular cavity. Int. J. Heat Mass Transf. 32(1), 1765–1778 (1989)

    Article  Google Scholar 

  14. Mahapatra, T.R., Pal, D., Mondal, S.: Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity. Int. J. Heat Mass Transf. 57, 771–785 (2013)

    Article  Google Scholar 

  15. Basak, T., Roy, S., Singh, A., Pop, I.: Finite element simulation of natural convection flow in a trapezoidal enclosure filled with porous medium due to uniform and non-uniform heating. Int. J. Heat Mass Transf. 52, 70–78 (2009)

    Article  Google Scholar 

  16. Singh, S., Sharif, M.A.R.: Mixed convection cooling of a rectangular cavity with inlet and exit openings on differentially heated side walls. Num. Heat Transf. Part A 44, 233–253 (2003)

    Article  Google Scholar 

  17. Wang, F., Chen, W., Zhang, C., Lin, J.: Analytical evaluation of the origin intensity factor of time-dependent diffusion fundamental solution for a matrix-free singular boundary method formulation. Appl. Math. Model. 49, 647–662 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, F., Chen, W., Tadeu, A., Correia, C.G.: Singular boundary method for transient convection-diffusion problems with time-dependent fundamental solution. Int. J. Heat Mass Transf. 114, 1126–1134 (2017)

    Article  Google Scholar 

  19. Khairat Dawood, M.M., Teamah, M.A.: Hydro-magnetic mixed convection double diffusive in a lid driven square cavity. Eur. J. Sci. Res. 85(3), 336–355 (2012)

    Google Scholar 

  20. Teamah, M.A., Shehata, A.I.: Magnetohydrodynamic double diffusivenatural convection in trapezoidal cavities. Alex. Eng. J. 55, 1037–1046 (2016)

    Article  Google Scholar 

  21. Kimura, S., Bejan, A.: The heatline visualization of convective heat transfer. ASME J. Heat Transf. 105, 916–919 (1983)

    Article  Google Scholar 

  22. Trevisan, O.V., Bejan, A.: Combined heat and mass transfer by natural convection in a vertical enclosure. ASME J. Heat Transf. 109, 104–112 (1987)

    Article  Google Scholar 

  23. Costa, V.A.F.: Unification of the streamline, heatline and massline methods for the visualization of two-dimensional transport phenomena. Int. J. Heat Mass Transf. 41, 27–33 (1999)

    Article  Google Scholar 

  24. Costa, V.A.F.: Unified streamline, heatline and massline methods for the visualization of two-dimensional heat and mass transfer in anisotropic media. Int. J. Heat Mass Transf. 46, 1309–1320 (2003)

    Article  Google Scholar 

  25. Mukhopadhyay, A., Qin, X., Aggarwal, S.K., Puri, I.K.: On extension of heatline and massline concepts to reacting flows through use of conserved scalars. J. Heat Transf. 124, 791–799 (2002)

    Article  Google Scholar 

  26. Costa, V.A.F.: Bejan’s heatlines and masslines for convection visualization and analysis. Trans. ASME 59, 126–145 (2006)

    Google Scholar 

  27. Bello-Ochende, F.L.: A heat function formulation for thermal convection in a square cavity. Int. Commun. Heat Mass Transf. 15, 193–202 (1988)

    Article  Google Scholar 

  28. Aggarwal, S.K., Manhapra, A.: Use of heatlines for unsteady buoyancy-driven flow in a cylindrical enclosure. J. Heat Transf. ASME 111, 576–578 (1989)

    Article  Google Scholar 

  29. Varol, Y., Öztop, H.F., Mobedi, M., Pop, I.: Visualization of natural convection heat transport using heatline method in porous non-isothermally heated triangular cavity. Int. J. Heat Mass Transf. 51(21–22), 5040–5051 (2008)

    Article  Google Scholar 

  30. Zhao, F.-Y., Liu, D., Tang, G.-F.: Application issues of the streamline, heatline and massline for conjugate heat and mass transfer. Int. J. Heat Mass Transf. 50, 320–334 (2007)

    Article  Google Scholar 

  31. Morega, A.M.: Magnetic field influence on the convective heat transfer in the solidification processes, Part 2. Rev. Roum. Sci. Tech.-Electrotech. Energ. 33(2), 155–156 (1988)

    Google Scholar 

  32. Basak, T., Roy, S., Pop, I.: Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept. Int. J. Heat Mass Transf. 52, 2471–2483 (2009)

    Article  Google Scholar 

  33. Basak, T., Ramakrishna, D., Roy, S., Matta, A., Pop, I.: A comprehensive heatline based approach for natural convection flows in trapezoidal enclosures: Effect of various walls heating. Int. J. Therm. Sci. 50, 1385–1404 (2011)

    Article  Google Scholar 

  34. Basak, T., Krishna Pradeep, P.V., Roy, S.: A complete heatline analysis on visualization of heat flow and thermal mixing during mixed convection in a square cavity with various wall heating. Ind. Eng. Chem. Res. 50, 7608–7630 (2011)

    Article  Google Scholar 

  35. Ilis, G.G., Mobedi, M., Sunden, B.: Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transf. 35, 696–703 (2008)

    Article  Google Scholar 

  36. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  37. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier–Stokes equations: streamfunction-velocity formulation. J. Comput. Phys. 207, 52–68 (2005)

    Article  MathSciNet  Google Scholar 

  38. Basak, T., Kumar, P., Anandalakshmi, R., Roy, S.: Analysis of entropy generation minimization during natural convection in trapezoidal enclosures of various angles with linearly heated side wall(s). Ind. Eng. Chem. Res. 51, 4069–4089 (2012)

    Article  Google Scholar 

  39. Davis, G.D.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their valuable comments, which enable to produce an improved presentation of their paper. The work of one of the authors (T.R.M.) is supported under SAP (DRS Phase-III, Letter No. F.510/3/DRS-III/2015(SAPI)) under UGC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Mahapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, T.R., Mondal, P. Heatline and Massline Analysis Due to Magnetohydrodynamic Double Diffusive Natural Convection in a Trapezoidal Enclosure with Various Aspect Ratios. Int. J. Appl. Comput. Math 5, 82 (2019). https://doi.org/10.1007/s40819-019-0657-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0657-4

Keywords

Navigation