Skip to main content
Log in

Effect of Magnetic Field on Mixed Convection Flow in a Porous Enclosure Using Nanofluids

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Two dimensional combined free-forced convection of Cu-water nanofluid in a square enclosure filled with fluid saturated porous medium subjected to uniform magnetic field has been numerically analyzed in the present work. The mathematical formulation consists of Darcy–Brinkman Forchheimer extended momentum equation with the enclosure having adiabatic top and bottom walls and isothermally cooled vertical side walls. Study has been performed over various ranges of governing parameters like Richardson number, Darcy number, Hartmann number and solid volume fraction. The results are presented in the form of hydrodynamic and temperature fields, average Nusselt number, velocity graphs and they are discussed to expound the effects of the physical parameters in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(\hbox {B}_{0}\) :

Magnetic field (T)

\(\hbox {c}_{\mathrm{p}}\) :

Fluid specific heat [(J/(kg K)]

Da:

Darcy number (\({=}\kappa /L^{2}\))

g:

Gravitational acceleration (\(\hbox {m}/\hbox {s}^{2})\)

Gr:

Grashof number (\({=}g\beta (T_{h}-T_{c})L^{3}/\nu _{f}^{2}\))

H:

Height of the enclosure (m)

Ha:

Hartmann number (\({=}B_0 L\surd \sigma _{nf} /\rho _{nf} \nu _f\))

K:

Thermal conductivity (W/m K)

L:

Width of the enclosure (m)

Nu:

Local Nusselt number

\(\overline{Nu}\) :

Average Nusselt number

p:

Pressure (\(\hbox {N}/\hbox {m}^{2})\)

P:

Dimensionless pressure

Pr:

Prandtl number (\({=}\nu _f /\alpha _f\))

Re:

Reynolds number (\({=}U_{0}L/\nu _f\))

Ri:

Richardson number (\({=}Gr/Re^{2}\))

t:

time (s)

T:

Dimensionless temperature (K)

\(\hbox {U}_{0}\) :

Lid velocity (m/s)

u,v:

Velocity components (m/s)

U,V:

Dimensionless velocity components

x,y:

Cartesian coordinates (m)

X,Y:

Dimensionless Cartesian coordinates

\(\upalpha \) :

Thermal diffusivity (\(\hbox {m}^{2}/\hbox {s}\))

\(\upbeta \) :

Coefficient of thermal expansion (1/K)

\(\upchi \) :

Specific heat ratio

\(\upphi \) :

Phase deviation

\(\upkappa \) :

Permeability of the porous medium (\(\hbox {m}^{2})\)

\(\upmu \) :

Dynamic viscosity (\(\hbox {Ns}/\hbox {m}^{2})\)

\(\upnu \) :

Kinematic viscosity (\(\hbox {m}^{2}/\hbox {s}\))

\(\uptheta \) :

Temperature

\(\uprho \) :

Density of the working fluid (\(\hbox {kg}/\hbox {m}^{3})\)

\(\upsigma \) :

Electrical conductivity (s/m)

\(\uptau \) :

Dimensionless time

c:

Cold

f:

Fluid

h:

Hot

0:

Reference state

P:

Solid particle

References

  1. Basak, T., Chamkha, A.J.: Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55, 5526–5543 (2012)

    Article  Google Scholar 

  2. Brinkman, H.C.: The viscosity of concentrated suspensions and solution. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  3. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng. Div. 231, 99–105 (1995)

    Google Scholar 

  4. Eastman, J.A., Choi, S., Li, S., Yu, W., Thomson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718 (2001)

    Article  Google Scholar 

  5. Grosen, T., Renvic, C., Pop, I., Ingham, D.B.: Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 87, 36–41 (2015)

    Article  Google Scholar 

  6. Iwatsu, R., Hyun, J.M., Kuwahara, K.: Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transf. 36, 1601–1608 (1993)

    Article  Google Scholar 

  7. Khanafer, K., Chamkha, A.J.: Hydromagnetic natural convection from an inclined porous square enclosure with heat generation. Numer. Heat Transf. A Appl. 33, 891–910 (1998)

    Article  Google Scholar 

  8. Khanafer, K., Chamkha, A.J.: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 42, 2465–2481 (1999)

    Article  MATH  Google Scholar 

  9. Kuznetsov, G.V., Sheremet, M.A.: Mathematical simulation of conjugate mixed convection in a rectangular region with a heat source. J. Appl. Mech. Tech. Phys. 49, 946–956 (2008)

    Article  Google Scholar 

  10. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904)

    Article  MATH  Google Scholar 

  11. Nagarajan, N., Oztop, H.F., Begum, A.Shamadhani, Al-Salem, Khaled: Numerical analysis of effect of magnetic field on combined surface tension and buoyancy driven convection in partially heated open enclosure. Int. J. Numer. Methods Heat Fluid Flow 25, 1793–1817 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, M.T., Aly, A.M., Lee, Sang-Wook: Natural convection in a Non-darcy porous cavity filled with Cu-water nanofluid using the characteristic-based split procedure in finite-element method. Numer. Heat Transf. A Appl. 67, 224–247 (2015)

    Article  Google Scholar 

  13. Nithyadevi, N., Begum, AShamadhani: Heat transfer enhancement of Cu-water nanofluid in a porous square enclosure driven by an incessantly moving flat plate. Int. J. Heat Mass Transf. 104, 1217–1228 (2017)

    Article  Google Scholar 

  14. Nithyadevi, N., Begum, A.Shamadhani, Oztop, H.F., Al-Salem, Khaled: Effects of inclination angle and non-uniform heating on mixed convection of a nanofluid filled porous enclosure with active mid-horizontal moving. Procedia Eng. 127, 279–286 (2015)

    Article  Google Scholar 

  15. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    MATH  Google Scholar 

  16. Sheikholeslami, M.: KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys. Lett. A 378, 3331–3339 (2014)

    Article  MATH  Google Scholar 

  17. Sheikholeslami, M.: Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur. Phys. J. Plus 129, 248 (2014)

    Article  Google Scholar 

  18. Sheikholeslami, M.: Effect of uniform suction on nanoluid low and heat transfer over a cylinder. J. Braz. Soc. Mech. Sci. Eng. 37, 1623–1633 (2015)

    Article  Google Scholar 

  19. Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of \(\text{ Al }_{2}\text{ O }_{3}\)-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  20. Sheikholeslami, M., Ganji, D.D., Rashidi, M.M.: Magnetic fi eld effect on unsteady nano fluid flow and heat transfer using Buongiorno model. J. Magn. Magn. Mater. 416, 164–173 (2016)

    Article  Google Scholar 

  21. Talebi, F., Mahmoudi, A.H., Shahi, M.: Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int. Commun. Heat Mass Transf. 37, 79–90 (2010)

    Article  Google Scholar 

  22. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  23. De Vahl Davis, G.: Laminar natural convection in an enclosed rectangular cavity. Int. J. Heat Mass Transf. 11, 1675–1693 (1968)

    Article  Google Scholar 

  24. Waheed, M.A.: Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate. Int. J. Heat Mass Transf. 52, 5055–5063 (2009)

    Article  MATH  Google Scholar 

  25. Waheed, M.A., Odewole, G.A., Alagbe, S.O.: Mixed convective heat transfer in rectangular enclosures filled with Porous Media. ARPN J. Eng. Appl. Sci. 6, 47–60 (2011)

    Google Scholar 

Download references

Acknowledgements

The author A.SHAMADHANI BEGUM gratefully acknowledges for the financial support from the UGC, New Delhi for BSR-JRF Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shamadhani Begum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithyadevi, N., Begum, A.S. Effect of Magnetic Field on Mixed Convection Flow in a Porous Enclosure Using Nanofluids. Int. J. Appl. Comput. Math 3, 3433–3442 (2017). https://doi.org/10.1007/s40819-017-0305-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0305-9

Keywords

Navigation