Skip to main content
Log in

Numerical Study of Thermal Spreading Resistance in Body-Fitted Curvilinear Coordinates

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

One of the most important problems encountered in the thermal management of microelectronics is thermal spreading resistance. This occurs either due to the heat transfer by the conduction mechanism from one solid to another with different cross-sectional areas, or as a result of the heat flow through a conductive solid with a variable cross-sectional area. In this study, both geometric conditions are considered simultaneously. A C++ program code is developed to calculate the thermal spreading resistance in arbitrary curved-edge heat spreaders. A method for automatic numerical generation of a body-fitted curvilinear coordinate system is applied to solve the heat conduction equation on the orthogonal curvilinear grids. A set of Poisson equations is then used to generate two-dimensional grids with grid control along all of the boundaries. The finite difference method is employed to discretize the partial differential equations of the problem. In addition, the Maxwell coordinate system is also used as a special case to demonstrate the similarity of grids generated by numerical and analytical methods. The numerical results of the study are compared with the exact solution, thus illustrating the performance of the approach. Finally, the temperature distribution and thermal spreading resistance are determined for the different shapes of curved edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a:

Length of the spreader top surface (m)

A:

Area (\(\hbox {m}^{2}\))

A, B:

Relations defined in Eq. 20

b:

Length of the spreader bottom surface (m)

c:

Length of the heat source (m)

J:

Jacobian value

M:

Control function

n:

Unit normal vector, positive in the outward direction

P:

Control function

W, W\(^{*}\) :

Weighting function scheme

x, y, z:

Cartesian coordinates (m)

\(\upalpha ,\upbeta ,\upgamma \) :

Functions defined in Eq. 19

\(\upvarepsilon , \tau \) :

Constant value defined in Eq. 16

\(\updelta \) :

Height of heat spreader (m)

\(\uptheta \) :

Angel

\(\upxi ,\upeta \) :

Curvilinear coordinates (m)

a:

Spreader top surface length

avg:

Length-averaged value

c:

Heat source

E:

East node neighbor

F:

Function

i:

Nodes in x direction

j:

Nodes in y direction

min:

Minimum value

max:

Maximum value

NW:

North-West node neighbor

NE:

North-East node neighbor

P:

Main node

S:

Heat sink, spreading

SW:

South-West node neighbor

S:

South node neighbor

SE:

South-East node

t:

Total value

W:

West node neighbor

\(\infty \) :

Fluid temperature, convective sink case

a, b, c, d:

Arbitrary values used in Eq. 21

References

  1. Culbertson, G.T., Stover, H.L.: Theoretical solutions for the thermal spreading resistance of ring-geometry diodes. IEEE Trans. Electron Devices 19(8), 986–988 (1972)

    Article  Google Scholar 

  2. Lee, S., Song, S., Au, V., Moran, K. P.: Constriction/spreading resistance model for electronics packaging. In: Proceedings of 4th ASME/JSME Thermal Engineering Joint Conference, Maui, HI, March, pp. 199–206 (1995)

  3. Lee, S., Song, S., Au, V.: Closed-form equation for thermal constriction/spreading resistances with variable resistance boundary condition. In: Proceedings of IEPS Conference, Atlanta, GA, September, pp. 111–121 (1994)

  4. Li, J., Zhang, X., Zhou, C., Zheng, J., Ge, D., Zhu, W.: New applications of an automated system for high-power LEDs. IEEE/ASME Trans. Mech. 21(2), 1035–1042 (2016)

    Article  Google Scholar 

  5. Li, J., Ma, B., Wang, R., Han, L.: Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab. 51(12), 2210–2215 (2011)

    Article  Google Scholar 

  6. Muzychka, Y.S., Bagnall, K.R., Wang, E.N.: Thermal spreading resistance and heat source temperature in compound orthotropic systems with interfacial resistance. IEEE Trans. Compon. Packag. Manuf. Technol. 3(11), 1826–1841 (2013)

    Article  Google Scholar 

  7. Zhang, J., Yin, L., Song, P., Bai, Y., Zhang, J.: Study on the influencing factors of thermal spreading resistance of HP-LED package. In: 2014 15th International Conference on Electronic Packaging Technology (ICEPT), pp. 806–810, 12–15 August (2014)

  8. Ellison, G.N.: Maximum thermal spreading resistance for rectangular sources and plates with nonunity aspect ratios. IEEE Trans. Compon. Packag. Technol. 26(2), 439–454 (2003)

    Article  Google Scholar 

  9. Muzychka, Y.S., Culham, J.R., Yovanovich, M.M.: Thermal spreading resistances in rectangular flux channels part II. Edge Cooling. In: 36th AIAA Thermophysics Conference, Orlando, FL, pp. 1–9 (2003)

  10. Muzychka, Y.S., Yovanovich, M.M., Culham, J.R.: Thermal spreading resistance in compound and orthotropic systems. J. Thermophys. Heat Transf. 18(1), 45–51 (2004)

    Article  Google Scholar 

  11. Dong, S., Zhou, Q., Wang, M., Jiang, X., Yang, J.: Analysis of thermal spreading resistance in high power LED package and its design optimization. In: 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), pp. 1–5, 8–11 August (2011)

  12. Rahmani, Y.; Shokouhmand, H.: A numerical study of thermal spreading/constriction resistance of silicon. In: 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 482–486, 30 May 2012–1 June 2012

  13. Dazhong, G., Marz, M., Jingtao, L.: Analytical solution of thermal spreading resistance in power electronics. In: IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 2, pp. 278–285, February (2012)

  14. Rahmani, Y., Shokouhmand, H.: Assessment of temperature-dependent conductivity effects on the thermal spreading/constriction resistance of semiconductors. J. Thermophys. Heat Transf. 26(4), 638–643 (2012)

    Article  Google Scholar 

  15. Li, J., Wang, W., Xia, Y., He, H., Zhu, W.: The soft-landing features of a micro-magnetorheological fluid damper. Appl. Phys. Lett. 106, 014104-5 (2015)

    Google Scholar 

  16. Li, J., Han, L., Duan, J., Zhong, J.: Interface mechanism of ultrasonic flip chip bonding. Appl. Phys. Lett. 90, 242902 (2007)

    Article  Google Scholar 

  17. Ghasemi, S.E., Valipour, P., Hatami, M., Ganji, D.D.: Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method. J. Cent. South Univ. 21(12), 4592–4598 (2014)

    Article  Google Scholar 

  18. Hatami, M., Ganji, D.D.: Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials. Ceram. Int. 40(5), 6765–6775 (2014)

    Article  Google Scholar 

  19. Muzychka, Y.S., Yovanovich, M.M., Culham, J. R.: Thermal spreading resistance in rectangular flux channels: part II. Edge cooling. In: Proceedings of 36th AIAA Thermophysics Conference, Orlando, FL, June, pp. 1–9 (2003)

  20. Muzychka, Y.S., Yovanovich, M.M., Culham, J.R.: Influence of geometry and edge cooling on thermal spreading resistance. J. Thermophys. Heat Transf. 20(2), 247–255 (2006)

    Article  Google Scholar 

  21. Muzychka, Y.S.: Spreading resistance in compound orthotropic flux tubes and channels with interfacial resistance. J. Thermophys. Heat Transf. 28(2), 313–319 (2014)

    Article  Google Scholar 

  22. Rahmani, Y., Ganji, D.D., Bandpy, M.G.: Analytical study of thermal spreading resistance in curved-edge heat spreader. Appl. Therm. Eng. 104(5), 527–533 (2016)

    Article  Google Scholar 

  23. Thompson, J.F., Thames, F.C., Mastin, C.W.: Automatic numerical generation of body-fitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies. J. Comput. Phys. 15, 229–319 (1974)

    Article  MATH  Google Scholar 

  24. Thompson, J.F., Thames, F.C., Mastin, C.W.: Boundary-fitted curvilinear coordinate system for solution of partial differential equation on fields containing any number of arbitrary two-dimensional bodies, NASA CR-2729 (1976)

  25. Cheng, C.H., Yu, J.H.: Conjugate heat transfer and buoyancy-driven secondary flow in the cooling channels within a vertical slab. Numer. Heat Transf. Part A 28, 443–459 (1995)

    Article  Google Scholar 

  26. Cheng, C.H., Chao, C.C.: Numerical prediction of the buoyancy-driven flow in the annulus between horizontal eccentric elliptical cylinders. Numer. Heat Transf. Part A 30, 283–303 (1996)

    Article  Google Scholar 

  27. Yovanovich, M.M., Marotta, E.E.: Thermal spreading and contact resistances. In: Bejan, A., Kraus, D. (eds.) Heat Transfer Handbook. Wiley, New York (2003). Chap. 4

    Google Scholar 

  28. Mikic, B., Rohsenow, W.M.: Thermal contact conductance. MIT Rept., DSR-74542-41, (1966)

  29. Thompson, J.F., Soni, B.K., Weatherill, N.P. (eds.): Handbook of Grid Generation. CRC Press, Boca Raton (2010)

    Google Scholar 

  30. Hsu, K., Lee, S.L.: A numerical technique for two-dimensional grid generation with grid control at all of the boundaries. J. Comput. Phys. 96, 451–469 (1991)

    Article  MATH  Google Scholar 

  31. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. PWS Publishing Company, Boston (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, Y., Bandpy, M.G. & Ganji, D.D. Numerical Study of Thermal Spreading Resistance in Body-Fitted Curvilinear Coordinates. Int. J. Appl. Comput. Math 3, 2873–2888 (2017). https://doi.org/10.1007/s40819-016-0271-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0271-7

Keywords

Navigation